1
|
Pacheco-García JL, Cano-Muñoz M, Loginov DS, Vankova P, Man P, Pey AL. Phosphorylation of cytosolic hPGK1 affects protein stability and ligand binding: implications for its subcellular targeting in cancer. FEBS J 2024; 291:4775-4795. [PMID: 39240559 DOI: 10.1111/febs.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Human phosphoglycerate kinase 1(hPGK1) is a key glycolytic enzyme that regulates the balance between ADP and ATP concentrations inside the cell. Phosphorylation of hPGK1 at S203 and S256 has been associated with enzyme import from the cytosol to the mitochondria and the nucleus respectively. These changes in subcellular locations drive tumorigenesis and are likely associated with site-specific changes in protein stability. In this work, we investigate the effects of site-specific phosphorylation on thermal and kinetic stability and protein structural dynamics by hydrogen-deuterium exchange (HDX) and molecular dynamics (MD) simulations. We also investigate the binding of 3-phosphoglycerate and Mg-ADP using these approaches. We show that the phosphomimetic mutation S256D reduces hPGK1 kinetic stability by 50-fold, with no effect of the mutation S203D. Calorimetric studies of ligand binding show a large decrease in affinity for Mg-ADP in the S256D variant, whereas Mg-ADP binding to the WT and S203D can be accurately investigated using protein kinetic stability and binding thermodynamic models. HDX and MD simulations confirmed the destabilization caused by the mutation S256D (with some long-range effects on stability) and its reduced affinity for Mg-ADP due to the strong destabilization of its binding site (particularly in the apo-state). Our research provides evidence suggesting that modifications in protein stability could potentially enhance the translocation of hPGK1 to the nucleus in cancer. While the structural and energetic basis of its mitochondrial import remain unknown.
Collapse
Affiliation(s)
| | | | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain
| |
Collapse
|
2
|
Phenotypic Modulation of Cancer-Associated Antioxidant NQO1 Activity by Post-Translational Modifications and the Natural Diversity of the Human Genome. Antioxidants (Basel) 2023; 12:antiox12020379. [PMID: 36829939 PMCID: PMC9952366 DOI: 10.3390/antiox12020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is a multifunctional and antioxidant stress protein whose expression is controlled by the Nrf2 signaling pathway. hNQO1 dysregulation is associated with cancer and neurological disorders. Recent works have shown that its activity is also modulated by different post-translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, and these may synergize with naturally-occurring and inactivating polymorphisms and mutations. Herein, I describe recent advances in the study of the effect of PTMs and genetic variations on the structure and function of hNQO1 and their relationship with disease development in different genetic backgrounds, as well as the physiological roles of these modifications. I pay particular attention to the long-range allosteric effects exerted by PTMs and natural variation on the multiple functions of hNQO1.
Collapse
|
3
|
Pacheco-Garcia JL, Cagiada M, Tienne-Matos K, Salido E, Lindorff-Larsen K, L. Pey A. Effect of naturally-occurring mutations on the stability and function of cancer-associated NQO1: Comparison of experiments and computation. Front Mol Biosci 2022; 9:1063620. [PMID: 36504709 PMCID: PMC9730889 DOI: 10.3389/fmolb.2022.1063620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in DNA sequencing technologies are revealing a large individual variability of the human genome. Our capacity to establish genotype-phenotype correlations in such large-scale is, however, limited. This task is particularly challenging due to the multifunctional nature of many proteins. Here we describe an extensive analysis of the stability and function of naturally-occurring variants (found in the COSMIC and gnomAD databases) of the cancer-associated human NAD(P)H:quinone oxidoreductase 1 (NQO1). First, we performed in silico saturation mutagenesis studies (>5,000 substitutions) aimed to identify regions in NQO1 important for stability and function. We then experimentally characterized twenty-two naturally-occurring variants in terms of protein levels during bacterial expression, solubility, thermal stability, and coenzyme binding. These studies showed a good overall correlation between experimental analysis and computational predictions; also the magnitude of the effects of the substitutions are similarly distributed in variants from the COSMIC and gnomAD databases. Outliers in these experimental-computational genotype-phenotype correlations remain, and we discuss these on the grounds and limitations of our approaches. Our work represents a further step to characterize the mutational landscape of NQO1 in the human genome and may help to improve high-throughput in silico tools for genotype-phenotype correlations in this multifunctional protein associated with disease.
Collapse
Affiliation(s)
| | - Matteo Cagiada
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, La Laguna, TenerifeTenerife, Spain
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Granada, Spain,*Correspondence: Angel L. Pey,
| |
Collapse
|
4
|
Pacheco-Garcia JL, Anoz-Carbonell E, Loginov DS, Vankova P, Salido E, Man P, Medina M, Palomino-Morales R, Pey AL. Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations. Arch Biochem Biophys 2022; 729:109392. [PMID: 36096178 DOI: 10.1016/j.abb.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Rogelio Palomino-Morales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences and Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
5
|
Pacheco-Garcia JL, Loginov DS, Anoz-Carbonell E, Vankova P, Palomino-Morales R, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations. Antioxidants (Basel) 2022; 11:antiox11061110. [PMID: 35740007 PMCID: PMC9219786 DOI: 10.3390/antiox11061110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural–functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| | - Dmitry S. Loginov
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Pavla Vankova
- Institute of Biotechnology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic;
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Rogelio Palomino-Morales
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, 18016 Granada, Spain;
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320 Tenerife, Spain;
| | - Petr Man
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| |
Collapse
|
6
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
7
|
Pacheco-Garcia JL, Anoz-Carbonell E, Vankova P, Kannan A, Palomino-Morales R, Mesa-Torres N, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biol 2021; 46:102112. [PMID: 34537677 PMCID: PMC8455868 DOI: 10.1016/j.redox.2021.102112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 10/31/2022] Open
Abstract
The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, 128 43, Czech Republic
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Rogelio Palomino-Morales
- Departmento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, Granada, Spain
| | - Noel Mesa-Torres
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|