1
|
Allegretta C, Montemitro E, Ciciriello F, Altieri MT, Sabbioni G, Breveglieri G, Borgatti M, Cabrini G, Laselva O. IL-17 family members exert an autocrine pro-inflammatory loop in CF respiratory epithelial cells ex vivo. Cell Immunol 2025; 409-410:104926. [PMID: 39837005 DOI: 10.1016/j.cellimm.2025.104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Lungs of people with Cystic Fibrosis (pwCF) are characterized by chronic inflammation and infection with P. aeruginosa. High levels of IL-17 A and F have been observed in sputum of pwCF and the interleukin-17(IL-17) family (A-to-F) has been suggested to play a key role in CF pulmonary disease. METHODS We measured mRNA levels of IL-17 receptors (IL-17R) by RT-qPCR in CF bronchial epithelial (CFBE) cultured cells upon infection with P. aeruginosa PAO1 strain or clinical exoproducts (EXO) isolated from pwCF. We measured IL-17 mRNA expression by RT-qPCR and the release of cytokines by ELISA and Bioplex from CF primary nasal epithelial (HNE) cultured cells. RESULTS Infection of CFBE cells with PAO1 or EXO isolated from 15 pwCF significantly increased mRNA expression of all IL-17R, except IL-17RD. Infection of HNE cells with EXO isolated from the correspondent donor significantly increased the mRNA levels of all the IL-17 cytokines and receptors, except for IL-17D and IL-17RD, and the release of the cytokines IL-17 A, IL-17B, IL-17C, IL-17E and IL-17F. HNE exposed to IL-17 A and F were induced to release pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), neutrophil chemokines (IL-8, G-CSF) and cytokines known to be involved in chloride and bicarbonate secretion, together with mucin upregulation (IL-4, IL-13). CONCLUSION These results highlight a wider expression of IL-17 family member in respiratory epithelial cells, which can play a role as an autocrine inflammatory amplification loop in CF airways. These in-vitro studies using patient-derived cultures underline the relevant role of IL-17 family members in CF pulmonary immune response.
Collapse
Affiliation(s)
- Caterina Allegretta
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Enza Montemitro
- Pediatric Pulmonology and Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Fabiana Ciciriello
- Pediatric Pulmonology and Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Teresa Altieri
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy; Interuniversity Consortium for Biotechnology (CIB), Trieste, Italy; Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, Ferrara University, Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy; Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, Ferrara University, Ferrara, Italy.
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
2
|
Pion A, Kavanagh E, Joynt AT, Raraigh KS, Vanscoy L, Langfelder-Schwind E, McNamara J, Moore B, Patel S, Merlo K, Temme R, Capurro V, Pesce E, Merlo C, Pedemonte N, Cutting GR, Sharma N. Investigation of CFTR Function in Human Nasal Epithelial Cells Informs Personalized Medicine. Am J Respir Cell Mol Biol 2024; 71:577-588. [PMID: 39012815 PMCID: PMC11568479 DOI: 10.1165/rcmb.2023-0398oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
We broaden the clinical versatility of human nasal epithelial (HNE) cells. HNEs were isolated from 10 participants harboring cystic fibrosis transmembrane conductance regulator (CFTR) variants: 9 with rare variants (Q359R [n = 2], G480S, R334W [n = 5], and R560T) and 1 harboring R117H;7T;TG10/5T;TG12. Cultures were differentiated at the air-liquid interface. CFTR function was measured in Ussing chambers at three conditions: baseline, ivacaftor, and elexacaftor + tezacaftor + ivacaftor (ETI). Four participants initiated modulators. Q359R HNEs had 5.4% (% wild-type) baseline CFTR function and 25.5% with ivacaftor. With therapy, sweat [Cl-] decreased and symptoms resolved. G480S HNEs had 4.1% baseline and 32.1% CFTR function with ETI. Clinically, forced expiratory volume in 1 second increased and sweat [Cl-] decreased (119 to 46 mmol/L) with ETI. In vitro cultures derived from 5 participants harboring R334W showed a moderate increase in CFTR function with exposure to modulators. For one of these participants, ETI was begun in vivo; symptoms and forced expiratory volume in 1 second improved. The c.1679G>C (R560T) HNEs had less than 4% baseline CFTR function and no modulator response. RNA analysis confirmed that c.1679G>C completely missplices. A symptomatic patient harboring R117H;7T;TG10/5T;TG12 exhibited reduced CFTR function (17.5%) in HNEs, facilitating a diagnosis of mild CF. HNEs responded to modulators (ivacaftor: 32.8%, ETI: 55.5%), and, since beginning therapy, lung function improved. We reaffirm HNE use for guiding therapeutic approaches, inform predictions on modulator response (e.g., R334W), and closely assess variants that affect splicing (e.g., c.1679G>C). Notably, functional studies in HNEs harboring R117H;7T;TG10/5T;TG12 facilitated a diagnosis of mild CF, suggesting the use for HNE functional studies as a clinical diagnostic test.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John McNamara
- Children’s Respiratory and Critical Care Specialists, Minneapolis, Minnesota
| | - Brooke Moore
- Children’s Respiratory and Critical Care Specialists, Minneapolis, Minnesota
| | - Shivani Patel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Renee Temme
- Genetics Department, Children’s Minnesota, Minneapolis, Minnesota
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | |
Collapse
|
3
|
Aluma BEB, Reiter J, Efrati O, Bezalel Y, Keler S, Ashkenazi M, Dagan A, Buchnik Y, Sadras I, Cohen-Cymberknoh M. Clinical efficacy of CFTR modulator therapy in people with cystic fibrosis carrying the I1234V mutation. J Cyst Fibros 2024; 23:685-689. [PMID: 38443268 DOI: 10.1016/j.jcf.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) mutation I1234V (I1234V, p.Ile1234Val, c.3700A>G), is a missense-mutation that creates a cryptic splice site, with the formation of a protein lacking 6 amino acids, that is misfolded and misprocessed. The in vitro effects of CFTR modulator (CFTRm) therapies on human bronchial cell models and intestinal organoids carrying this mutation are conflicting. The aim of this study was therefore to explore the clinical efficacy of CFTRm in people with cystic fibrosis (pwCF) carrying this mutation. METHODS This was a retrospective descriptive study of the clinical records of homozygous and compound heterozygous (none F508del) pwCF, for the I1234V mutation, that received CFTRm. Parameters explored were body mass index (BMI), forced expiratory volume in one second percent predicted (FEV1%), lung clearance index (LCI) and quantitative sweat chloride measurements. RESULTS Mean age was 38.6 ± 14 years (range 21-60). Two subjects were homozygous and five compound heterozygous, with minimal function mutations. Four were pancreatic insufficient and three pancreatic sufficient. The two homozygous subjects received Tezacaftor/Ivacaftor, the remaining Elexacaftor/Tezacaftor/Ivacaftor (ETI); treatment ranged from 6 to 12 months. Mean BMI score increased from 21.7 ± 1.3 to 23.6 ± 2.1 kg/m2 (p = 0.04); FEV1(%pred) increased by 20.14±10.2while mean change in FEV1 in the year prior to CFTRm initiation was -0.14±1.18 (p = 0.0001). Additionally, LCI 2.5% decreased from 18.7 to 14.5 (p = 0.07); sweat chloride decreased from 116±10 to 90±17 mEq/L (p = 0.017) and chronic pseudomonas airway infection was eradicated in one subject. CONCLUSIONS This study supports a clinical benefit for CFTRm therapy in pwCF carrying the I1234V mutation.
Collapse
Affiliation(s)
- Bat El Bar Aluma
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Joel Reiter
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ori Efrati
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Bezalel
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Keler
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ashkenazi
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Dagan
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Buchnik
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Sadras
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
4
|
Jahanshahi S, Ouyang H, Ahmed C, Zahedi Amiri A, Dahal S, Mao YQ, Van Ommen DAJ, Malty R, Duan W, Been T, Hernandez J, Mangos M, Nurtanto J, Babu M, Attisano L, Houry WA, Moraes TJ, Cochrane A. Broad spectrum post-entry inhibitors of coronavirus replication: Cardiotonic steroids and monensin. Virology 2024; 589:109915. [PMID: 37931588 DOI: 10.1016/j.virol.2023.109915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Choudhary Ahmed
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ali Zahedi Amiri
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Subha Dahal
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qian Mao
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Ramy Malty
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Wenming Duan
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Terek Been
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Maria Mangos
- Donnelly Center, University of Toronto, Ontario, Canada
| | | | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Liliana Attisano
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Donnelly Center, University of Toronto, Ontario, Canada
| | - Walid A Houry
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Dept. of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan Cochrane
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Dreano E, Burgel PR, Hatton A, Bouazza N, Chevalier B, Macey J, Leroy S, Durieu I, Weiss L, Grenet D, Stremler N, Ohlmann C, Reix P, Porzio M, Roux Claude P, Rémus N, Douvry B, Montcouquiol S, Cosson L, Mankikian J, Languepin J, Houdouin V, Le Clainche L, Guillaumot A, Pouradier D, Tissot A, Priou P, Mély L, Chedevergne F, Lebourgeois M, Lebihan J, Martin C, Zavala F, Da Silva J, Lemonnier L, Kelly-Aubert M, Golec A, Foucaud P, Marguet C, Edelman A, Hinzpeter A, de Carli P, Girodon E, Sermet-Gaudelus I, Pranke I. Theratyping cystic fibrosis patients to guide elexacaftor/tezacaftor/ivacaftor out-of-label prescription. Eur Respir J 2023; 62:2300110. [PMID: 37696564 DOI: 10.1183/13993003.00110-2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Around 20% of people with cystic fibrosis (pwCF) do not have access to the triple combination elexacaftor/tezacaftor/ivacaftor (ETI) in Europe because they do not carry the F508del allele on the CF transmembrane conductance regulator (CFTR) gene. Considering that pwCF carrying rare variants may benefit from ETI, including variants already validated by the US Food and Drug Administration (FDA), a compassionate use programme was launched in France. PwCF were invited to undergo a nasal brushing to investigate whether the pharmacological rescue of CFTR activity by ETI in human nasal epithelial cell (HNEC) cultures was predictive of the clinical response. METHODS CFTR activity correction was studied by short-circuit current in HNEC cultures at basal state (dimethyl sulfoxide (DMSO)) and after ETI incubation and expressed as percentage of normal (wild-type (WT)) CFTR activity after sequential addition of forskolin and Inh-172 (ΔI ETI/DMSO%WT). RESULTS 11 pwCF carried variants eligible for ETI according to the FDA label and 28 carried variants not listed by the FDA. ETI significantly increased CFTR activity of FDA-approved CFTR variants (I601F, G85E, S492F, M1101K, R347P, R74W;V201M;D1270N and H1085R). We point out ETI correction of non-FDA-approved variants, including N1303K, R334W, R1066C, Q552P and terminal splicing variants (4374+1G>A and 4096-3C>G). ΔI ETI/DMSO%WT was significantly correlated to change in percentage predicted forced expiratory volume in 1 s and sweat chloride concentration (p<0.0001 for both). G85E, R74W;V201M;D1270N, Q552P and M1101K were rescued more efficiently by other CFTR modulator combinations than ETI. CONCLUSIONS Primary nasal epithelial cells hold promise for expanding the prescription of CFTR modulators in pwCF carrying rare mutants. Additional variants should be discussed for ETI indication.
Collapse
Affiliation(s)
- Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Pierre Régis Burgel
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
- INSERM U1016, Institut Cochin, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
| | - Aurelie Hatton
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Naim Bouazza
- Université Paris-Cité, Paris, France
- Unité de Recherche Clinique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Benoit Chevalier
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Julie Macey
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU Pellegrin, Bordeaux, France
| | - Sylvie Leroy
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU, Nice, France
| | - Isabelle Durieu
- Centre de Référence Adulte de la Mucoviscidose, Hospices Civils de Lyon, Université de Lyon, Équipe d'Accueil Health Services and Performance Research (HESPER) 7425, Lyon, France
| | - Laurence Weiss
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Strasbourg, France
| | - Dominique Grenet
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital Foch, Suresnes, France
| | - Nathalie Stremler
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital de la Timone, Marseille, France
| | - Camille Ohlmann
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Philippe Reix
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Michele Porzio
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Strasbourg, France
| | - Pauline Roux Claude
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Besancon, France
| | - Natacha Rémus
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Benoit Douvry
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Sylvie Montcouquiol
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Clermont Ferrand, France
| | - Laure Cosson
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Tours, France
| | - Julie Mankikian
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Tours, France
| | - Jeanne Languepin
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHU, Limoges, France
| | - Veronique Houdouin
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Laurence Le Clainche
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Anne Guillaumot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nancy, France
| | - Delphine Pouradier
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
| | - Adrien Tissot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nantes, France
| | - Pascaline Priou
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Angers, France
| | - Laurent Mély
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital René Sabran, Hospices Civils de Lyon, Giens, France
| | - Frederique Chedevergne
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Muriel Lebourgeois
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Jean Lebihan
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, Centre de Perharidy, Roscoff, France
| | - Clémence Martin
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | - Flora Zavala
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Jennifer Da Silva
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | | | - Mairead Kelly-Aubert
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Anita Golec
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Christophe Marguet
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Rouen, France
| | - Aleksander Edelman
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Alexandre Hinzpeter
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Emmanuelle Girodon
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, Paris, France
- These three authors contributed equally to this work as co-last authors
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
- These three authors contributed equally to this work as co-last authors
| | - Iwona Pranke
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- These three authors contributed equally to this work as co-last authors
| |
Collapse
|
6
|
Allegretta C, Difonzo G, Caponio F, Tamma G, Laselva O. Olive Leaf Extract (OLE) as a Novel Antioxidant That Ameliorates the Inflammatory Response in Cystic Fibrosis. Cells 2023; 12:1764. [PMID: 37443798 PMCID: PMC10340374 DOI: 10.3390/cells12131764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The deletion of phenylalanine at position 508 (F508del) produces a misfolded CFTR protein that is retained in the ER and degraded. The lack of normal CFTR channel activity is associated with chronic infection and inflammation which are the primary causes of declining lung function in Cystic Fibrosis (CF) patients. Moreover, LPS-dependent oxidative stress downregulates CFTR function in airway epithelial cells. Olive leaf extract (OLE) is used in traditional medicine for its effects, including anti-oxidant and anti-inflammatory ones. We found that OLE decreased the intracellular ROS levels in a dose-response manner in CFBE cells. Moreover, OLE attenuates the inflammatory response to LPS or IL-1β/TNFα stimulation, mimicking the infection and inflammatory status of CF patients, in CFBE and primary nasal epithelial (HNE) cells. Furthermore, we demonstrated that OLE restored the LPS-mediated decrease of TrikfaftaTM-dependent F508del-CFTR function in CFBE and HNE cultures. These findings provide strong evidence of OLE to prevent redox imbalance and inflammation that can cause chronic lung damage by enhancing the antioxidant activity and attenuating inflammation in CF airway epithelial cells. Additionally, OLE might be used in combination with CFTR modulators therapy to improve their efficacy in CF patients.
Collapse
Affiliation(s)
- Caterina Allegretta
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
7
|
Terlizzi V, Centrone C, Ferrari B, Castellani C, Gunawardena TNA, Taccetti G, Laselva O. Modulator Therapy in Cystic Fibrosis Patients with cis Variants in F508del Complex Allele: A Short-Term Observational Case Series. J Pers Med 2022; 12:jpm12091421. [PMID: 36143206 PMCID: PMC9504164 DOI: 10.3390/jpm12091421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies reported the influence of cis variants in F508del cystic fibrosis (CF) patients in their responses to CFTR modulators. The current study is a prospective, observational study involving three patients with CF and pancreatic insufficiency, carrying a complex allele including F508del with A238V, I1027T, or L467F. We report clinical data before and after 4 weeks of treatment with tezacaftor (TEZ)/ivacaftor (IVA), elexacaftor (ELX)/TEZ/IVA, and lumacaftor (LUM)/IVA for patients with complex alleles A238V, I1027T, and L467F, respectively. The 50-year-old patient bearing F508del;A238V/D1152H showed a normal sweat test (13 mEq/L) and improvements in forced expiratory volume in the first second (FEV1) (+7 points), body mass index (BMI) (+0.85), and respiratory CF Questionnaire-Revised (CFQ-R) domain (+22.2 points). The 12-year-old patient bearing F508del;I1027T/R709X showed an improvement in a sweat test (−40 mEq/l), FEV1 (+9 points) and the respiratory CFQ-R domain (+16.7 points). No changes in outcomes were observed for the 6-year-old patient F508del;L467F/F508del. Our data highlight that the reported variants do not modify the phenotypic expression of F508del. Searching L467F is crucial in CF patients with F508del nonresponsive to ELX/TEZ/IVA. Further data are needed to evaluate the clinical effect of these variants after a longer follow up.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Paediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital, 50139 Florence, Italy
- Correspondence: (V.T.); (O.L.); Tel.: +39-0881588074 (O.L.)
| | - Claudia Centrone
- Diagnostic Genetics Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Beatrice Ferrari
- Rehabilitation Unit, Meyer Children’s Hospital, 50139 Florence, Italy
| | - Chiara Castellani
- Department of Radiology, Meyer Children’s Hospital, 50139 Florence, Italy
| | - Tarini N. A. Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 8X4, Canada
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 8X4, Canada
| | - Giovanni Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital, 50139 Florence, Italy
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence: (V.T.); (O.L.); Tel.: +39-0881588074 (O.L.)
| |
Collapse
|
8
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
9
|
Laselva O, Criscione ML, Allegretta C, Di Gioia S, Liso A, Conese M. Insulin-Like Growth Factor Binding Protein (IGFBP-6) as a Novel Regulator of Inflammatory Response in Cystic Fibrosis Airway Cells. Front Mol Biosci 2022; 9:905468. [PMID: 35903151 PMCID: PMC9322660 DOI: 10.3389/fmolb.2022.905468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic Fibrosis (CF) patients are prone to contracting bacterial lung infections with opportunistic pathogens, especially Pseudomonas aeruginosa. Prolonged P. aeruginosa infections have been linked to chronic inflammation in the CF lung, whose hallmarks are increased levels of cytokines (i.e., TNF-α, IL-1β, IL-6) and neutrophil attraction by chemokines, like IL-8. Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system and was found at higher levels in the sera and synovial tissue of rheumatoid arthritis patients. Moreover, it has been demonstrated that IGFBP-6 has chemoattractant properties towards cells of the innate (neutrophils, monocytes) and adaptive (T cells) immunity. However, it is not known whether IGFBP-6 expression is dysregulated in airway epithelial cells under infection/inflammatory conditions. Therefore, we first measured the basal IGFBP-6 mRNA and protein levels in bronchial epithelial cells lines (Wt and F508del-CFTR CFBE), finding they both are upregulated in F508del-CFTR CFBE cells. Interestingly, LPS and IL-1β+TNFα treatments increased the IGFBP-6 mRNA level, that was reduced after treatment with an anti-inflammatory (Dimethyl Fumarate) in CFBE cell line and in patient-derived nasal epithelial cultures. Lastly, we demonstrated that IGFBP-6 reduced the level of pro-inflammatory cytokines in both CFBE and primary nasal epithelial cells, without affecting rescued CFTR expression and function. The addition of a neutralizing antibody to IGFBP-6 increased pro-inflammatory cytokines expression under challenge with LPS. Together, these data suggest that IGFBP-6 may play a direct role in the CF-associated inflammation.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| | - Maria Laura Criscione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| |
Collapse
|
10
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
11
|
Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers. J Pers Med 2022; 12:jpm12040632. [PMID: 35455747 PMCID: PMC9027586 DOI: 10.3390/jpm12040632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. Methods: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl− and HCO3− secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. Results: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. Conclusions: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl− and HCO3− transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations.
Collapse
|
12
|
Abstract
Cystic fibrosis (CF), the most common genetic disease among the Caucasian population, is caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR), a chloride epithelial channel whose dysfunction results in severe airway obstruction and inflammation, eventually leading to respiratory failure. The discovery of the CFTR gene in 1989 provided new insights into the basic genetic defect of CF and allowed the study of potential therapies targeting the aberrant protein. In recent years, the approval of “CFTR modulators”, the first molecules designed to selectively target the underlying molecular defects caused by specific CF-causing mutations, marked the beginning of a new era in CF treatment. These drugs have been demonstrated to significantly improve lung function and ameliorate the quality of life of many patients, especially those bearing the most common CFTR mutatant F508del. However, a substantial portion of CF subjects, accounting for ~20% of the European CF population, carry rare CFTR mutations and are still not eligible for CFTR modulator therapy, partly due to our limited understanding of the molecular defects associated with these genetic alterations. Thus, the implementation of models to study the phenotype of these rare CFTR mutations and their response to currently approved drugs, as well as to compounds under research and clinical development, is of key importance. The purpose of this review is to summarize the current knowledge on the potential of CFTR modulators in rescuing the function of rare CF-causing CFTR variants, focusing on both investigational and clinically approved molecules.
Collapse
|
13
|
Iazzi M, Astori A, St-Germain J, Raught B, Gupta GD. Proximity Profiling of the CFTR Interaction Landscape in Response to Orkambi. Int J Mol Sci 2022; 23:2442. [PMID: 35269585 PMCID: PMC8910062 DOI: 10.3390/ijms23052442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Audrey Astori
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Jonathan St-Germain
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Gagan D. Gupta
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
14
|
Ramalho AS, Boon M, Proesmans M, Vermeulen F, Carlon MS, De Boeck K. Assays of CFTR Function In Vitro, Ex Vivo and In Vivo. Int J Mol Sci 2022; 23:1437. [PMID: 35163362 PMCID: PMC8836180 DOI: 10.3390/ijms23031437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis, a multi-organ genetic disease, is characterized by abnormal function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel at the apical membrane of several epithelia. In recent years, therapeutic strategies have been developed to correct the CFTR defect. To evaluate CFTR function at baseline for diagnosis, or the efficacy of CFTR-restoring therapy, reliable tests are needed to measure CFTR function, in vitro, ex vivo and in vivo. In vitro techniques either directly or indirectly measure ion fluxes; direct measurement of ion fluxes and quenching of fluorescence in cell-based assays, change in transmembrane voltage or current in patch clamp or Ussing chamber, swelling of CFTR-containing organoids by secondary water influx upon CFTR activation. Several cell or tissue types can be used. Ex vivo and in vivo assays similarly evaluate current (intestinal current measurement) and membrane potential differences (nasal potential difference), on tissues from individual patients. In the sweat test, the most frequently used in vivo evaluation of CFTR function, chloride concentration or stimulated sweat rate can be directly measured. Here, we will describe the currently available bio-assays for quantitative evaluation of CFTR function, their indications, advantages and disadvantages, and correlation with clinical outcome measures.
Collapse
Affiliation(s)
- Anabela S. Ramalho
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
| | - Mieke Boon
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marijke Proesmans
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - François Vermeulen
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium
| | - Kris De Boeck
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
15
|
Zahir FR. The Need for Precision Therapies as Determined by Genetic Signature for Cystic Fibrosis. J Pers Med 2021; 11:jpm11121353. [PMID: 34945826 PMCID: PMC8708496 DOI: 10.3390/jpm11121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Farah R Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
16
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
17
|
A new platform for high-throughput therapy testing on iPSC-derived lung progenitor cells from cystic fibrosis patients. Stem Cell Reports 2021; 16:2825-2837. [PMID: 34678210 PMCID: PMC8581165 DOI: 10.1016/j.stemcr.2021.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies. A Canadian resource (CFIT) has CF donor-matched iPSCs and nasal epithelial cells Lung progenitor cells (LPCs) differentiated from iPSCs express CFTR LPCs from people with rare CFTR mutations enable high-throughput therapy testing Matching nasal cultures can validate patient-specific drug responses in LPCs
Collapse
|
18
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants. J Pers Med 2021; 11:jpm11070643. [PMID: 34357110 PMCID: PMC8307171 DOI: 10.3390/jpm11070643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Trikafta, a triple-combination drug, consisting of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor) and the gating potentiator VX-770 (ivacaftor) provided unprecedented clinical benefits for patients with the most common cystic fibrosis (CF) mutation, F508del. Trikafta indications were recently expanded to additional 177 mutations in the CF transmembrane conductance regulator (CFTR). To minimize life-long pharmacological and financial burden of drug administration, if possible, we determined the necessary and sufficient modulator combination that can achieve maximal benefit in preclinical setting for selected mutants. To this end, the biochemical and functional rescue of single corrector-responsive rare mutants were investigated in a bronchial epithelial cell line and patient-derived human primary nasal epithelia (HNE), respectively. The plasma membrane density of P67L-, L206W- or S549R-CFTR corrected by VX-661 or other type I correctors was moderately increased by VX-445. Short-circuit current measurements of HNE, however, uncovered that correction comparable to Trikafta was achieved for S549R-CFTR by VX-661 + VX-770 and for P67L- and L206W-CFTR by the VX-661 + VX-445 combination. Thus, introduction of a third modulator may not provide additional benefit for patients with a subset of rare CFTR missense mutations. These results also underscore that HNE, as a precision medicine model, enable the optimization of mutation-specific modulator combinations to maximize their efficacy and minimize life-long drug exposure of CF patients.
Collapse
|
20
|
Laselva O, Qureshi Z, Zeng ZW, Petrotchenko EV, Ramjeesingh M, Hamilton CM, Huan LJ, Borchers CH, Pomès R, Young R, Bear CE. Identification of binding sites for ivacaftor on the cystic fibrosis transmembrane conductance regulator. iScience 2021; 24:102542. [PMID: 34142049 PMCID: PMC8184517 DOI: 10.1016/j.isci.2021.102542] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ivacaftor (VX-770) was the first cystic fibrosis transmembrane conductance regulator (CFTR) modulatory drug approved for the treatment of patients with cystic fibrosis. Electron cryomicroscopy (cryo-EM) studies of detergent-solubilized CFTR indicated that VX-770 bound to a site at the interface between solvent and a hinge region in the CFTR protein conferred by transmembrane (tm) helices: tm4, tm5, and tm8. We re-evaluated VX-770 binding to CFTR in biological membranes using photoactivatable VX-770 probes. One such probe covalently labeled CFTR at two sites as determined following trypsin digestion and analysis by tandem-mass spectrometry. One labeled peptide resides in the cytosolic loop 4 of CFTR and the other is located in tm8, proximal to the site identified by cryo-EM. Complementary data from functional and molecular dynamic simulation studies support a model, where VX-770 mediates potentiation via multiple sites in the CFTR protein.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Zafar Qureshi
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Zhi-Wei Zeng
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Evgeniy V. Petrotchenko
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Mohabir Ramjeesingh
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | | | - Ling-Jun Huan
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Régis Pomès
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Robert Young
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Christine E. Bear
- Programme in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Laselva O, Bartlett C, Gunawardena TNA, Ouyang H, Eckford PDW, Moraes TJ, Bear CE, Gonska T. Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator. Eur Respir J 2021; 57:2002774. [PMID: 33303536 PMCID: PMC8209484 DOI: 10.1183/13993003.02774-2020] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Physiology, University of Toronto, Toronto, ON, Canada
| | - Claire Bartlett
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tarini N A Gunawardena
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hong Ouyang
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul D W Eckford
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Christine E Bear
- Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Physiology, University of Toronto, Toronto, ON, Canada
- Dept of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanja Gonska
- Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Silva IAL, Railean V, Duarte A, Amaral MD. Personalized Medicine Based on Nasal Epithelial Cells: Comparative Studies with Rectal Biopsies and Intestinal Organoids. J Pers Med 2021; 11:421. [PMID: 34065744 PMCID: PMC8156700 DOI: 10.3390/jpm11050421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
As highly effective CFTR modulator therapies (HEMT) emerge, there is an unmet need to find effective drugs for people with CF (PwCF) with ultra-rare mutations who are too few for classical clinical trials and for whom there are no drug discovery programs. Therefore, biomarkers reliably predicting the benefit from CFTR modulator therapies are essential to find effective drugs for PwCF through personalized approaches termed theranostics. Here, we assess CFTR basal function and the individual responses to CFTR modulators in primary human nasal epithelial (pHNE) cells from PwCF carrying rare mutations and compare these measurements with those in native rectal biopsies and intestinal organoids, respectively, in the same individual. The basal function in pHNEs shows good correlation with CFTR basal function in rectal biopsies. In parallel, CFTR rescue in pHNEs by CFTR modulators correlates to that in intestinal organoids. Altogether, results show that pHNEs are a bona fide theranostic model to assess CFTR rescue by CFTR modulator drugs, in particular for PwCF and rare mutations.
Collapse
Affiliation(s)
| | | | | | - Margarida D. Amaral
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; (I.A.L.S.); (V.R.); (A.D.)
| |
Collapse
|
23
|
Graeber SY, Vitzthum C, Mall MA. Potential of Intestinal Current Measurement for Personalized Treatment of Patients with Cystic Fibrosis. J Pers Med 2021; 11:jpm11050384. [PMID: 34066648 PMCID: PMC8151208 DOI: 10.3390/jpm11050384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Refinement of personalized treatment of cystic fibrosis (CF) with emerging medicines targeting the CF basic defect will likely benefit from biomarkers sensitive to detect improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function in individual patients. Intestinal current measurement (ICM) is a technique that enables quantitative assessment of CFTR chloride channel function in rectal tissues or other intestinal epithelia. ICM was originally developed to study the CF ion transport defect in the intestine and has been established as a sensitive biomarker of CFTR function and diagnostic test for CF. With the emergence of CFTR-directed therapeutics, ICM has become an important tool to estimate the level of rescue of CFTR function achieved by approved CFTR modulators, both at the level of CFTR genotype groups, as well as individual patients with CF. In combination with preclinical patient-derived cell culture models, ICM may aid the development of targeted therapies for patients with rare CFTR mutations. Here, we review the principles of ICM and examine how this CFTR biomarker may be used to support diagnostic testing and enhance personalized medicine for individual patients with common as well as rare CFTR mutations in the new era of medicines targeting the underlying cause of CF.
Collapse
Affiliation(s)
- Simon Y. Graeber
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Constanze Vitzthum
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Marcus A. Mall
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-(30)-450-566-182; Fax: +49-(30)-450-566-931
| |
Collapse
|
24
|
Phenotyping Rare CFTR Mutations Reveal Functional Expression Defects Restored by TRIKAFTA TM. J Pers Med 2021; 11:jpm11040301. [PMID: 33920764 PMCID: PMC8071105 DOI: 10.3390/jpm11040301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
The rare Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, c.1826A > G (H609R) and c.3067_3072delATAGTG (I1023_V1024del), are associated with severe lung disease. Despite the existence of four CFTR targeted therapies, none have been approved for individuals with these mutations because the associated molecular defects were not known. In this study we examined the consequences of these mutations on protein processing and channel function in HEK293 cells. We found that, similar to F508del, H609R and I1023_V1024del-CFTR exhibited reduced protein processing and altered channel function. Because the I1023_V1024del mutation can be linked with the mutation, I148T, we also examined the protein conferred by transfection of a plasmid bearing both mutations. Interestingly, together with I148T, there was no further reduction in channel function exhibited by I1023-V1024del. Both H609R and I1023_V1024del failed to exhibit significant correction of their functional expression with lumacaftor and ivacaftor. In contrast, the triple modulator combination found in TRIKAFTATM, i.e., tezacaftor, elexacaftor and ivacaftor rescued trafficking and function of both of these mutants. These in-vitro findings suggest that patients harbouring H609R or I1023_V1024del, alone or with I148T, may benefit clinically from treatment with TRIKAFTATM.
Collapse
|