1
|
Grigor’eva EV, Karapetyan LV, Malakhova AA, Medvedev SP, Minina JM, Hayrapetyan VH, Vardanyan VS, Zakian SM, Arakelyan A, Zakharyan R. Generation of iPSCs from a Patient with the M694V Mutation in the MEFV Gene Associated with Familial Mediterranean Fever and Their Differentiation into Macrophages. Int J Mol Sci 2024; 25:6102. [PMID: 38892289 PMCID: PMC11173119 DOI: 10.3390/ijms25116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Familial Mediterranean fever (FMF) is a systemic autoinflammatory disorder caused by inherited mutations in the MEFV (Mediterranean FeVer) gene, located on chromosome 16 (16p13.3) and encoding the pyrin protein. Despite the existing data on MEFV mutations, the exact mechanism of their effect on the development of the pathological processes leading to the spontaneous and recurrent autoinflammatory attacks observed in FMF, remains unclear. Induced pluripotent stem cells (iPSCs) are considered an important tool to study the molecular genetic mechanisms of various diseases due to their ability to differentiate into any cell type, including macrophages, which contribute to the development of FMF. In this study, we developed iPSCs from an Armenian patient with FMF carrying the M694V, p.(Met694Val) (c.2080A>G, rs61752717) pathogenic mutation in exon 10 of the MEFV gene. As a result of direct differentiation, macrophages expressing CD14 and CD45 surface markers were obtained. We found that the morphology of macrophages derived from iPSCs of a patient with the MEFV mutation significantly differed from that of macrophages derived from iPSCs of a healthy donor carrying the wild-type MEFV gene.
Collapse
Affiliation(s)
- Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lana V. Karapetyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Julia M. Minina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
| | - Varduhi H. Hayrapetyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Valentina S. Vardanyan
- Department of Rheumatology, Yerevan State Medical University after Mkhitar Heratsi (YSMU), Yerevan 0025, Armenia;
- Department of Rheumatology, “Mikaelyan” Institute of Surgery, Yerevan 0052, Armenia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Arsen Arakelyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Roksana Zakharyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| |
Collapse
|
2
|
Stöberl N, Donaldson J, Binda CS, McAllister B, Hall-Roberts H, Jones L, Massey TH, Allen ND. Mutant huntingtin confers cell-autonomous phenotypes on Huntington's disease iPSC-derived microglia. Sci Rep 2023; 13:20477. [PMID: 37993517 PMCID: PMC10665390 DOI: 10.1038/s41598-023-46852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominantly inherited CAG repeat expansion in the huntingtin gene (HTT). Neuroinflammation and microglia have been implicated in HD pathology, however it has been unclear if mutant HTT (mHTT) expression has an adverse cell-autonomous effect on microglial function, or if they are only activated in response to the neurodegenerative brain environment in HD. To establish a human cell model of HD microglia function, we generated isogenic controls for HD patient-derived induced pluripotent stem cells (iPSC) with 109 CAG repeats (Q109). Q109 and isogenic Q22 iPSC, as well as non-isogenic Q60 and Q33 iPSC lines, were differentiated to iPSC-microglia. Our study supports a model of basal microglia dysfunction in HD leading to elevated pro-inflammatory cytokine production together with impaired phagocytosis and endocytosis capacity, in the absence of immune stimulation. These findings are consistent with early microglia activation observed in pre-manifest patients and indicate that mHTT gene expression affects microglia function in a cell-autonomous way.
Collapse
Affiliation(s)
- Nina Stöberl
- School of Biosciences, Cardiff University, Cardiff, UK.
| | - Jasmine Donaldson
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Caroline S Binda
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Lesley Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
3
|
Ohno T, Nakane T, Akase T, Kurasawa H, Aizawa Y. Development of an isogenic human cell trio that models polyglutamine disease. Genes Genet Syst 2023; 98:179-189. [PMID: 37821389 DOI: 10.1266/ggs.22-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Polyglutamine (polyQ) diseases are rare autosomal-dominant neurodegenerative diseases associated with the expansion of glutamine-encoding triplet repeats in certain genes. To investigate the functional influence of repeat expansion on disease mechanisms, we applied a biallelic genome-engineering platform that we recently established, called Universal Knock-in System or UKiS, to develop a human cell trio, a set of three isogenic cell lines that are homozygous for two different numbers of repeats (first and second lines) or heterozygous for the two repeat numbers (third line). As an example of a polyQ disease, we chose spinocerebellar ataxia type 2 (SCA2). In a pseudodiploid human cell line, both alleles of the glutamine-encoding triplet repeat in the SCA2-causing gene, ataxin 2 or ATXN2, were first knocked in with a donor sequence encoding both thymidine kinase and either puromycin or blasticidin resistance proteins under dual drug selection. The knocked-in donor alleles were then substituted with a payload having either 22 or 76 triplet repeats in ATXN2 by ganciclovir negative selection. The two-step substitution and subsequent SNP typing and genomic sequencing confirmed that the SCA2-modeling isogenic cell trio was obtained: three clones of 22-repeat homozygotes, two clones of 22/76-repeat heterozygotes and two clones of 76-repeat homozygotes. Finally, RT-PCR and immunoblotting using the obtained clones showed that, consistent with previous observations, glutamine tract expansion reduced transcriptional and translational expression of ATXN2. The cell clones with homozygous long-repeat alleles, which are rarely obtained from patients with SCA2, showed more drastic reduction of ATXN2 expression than the heterozygous clones. This study thus demonstrates the potential of UKiS, which is a beneficial platform for the efficient development of cell models not only for polyQ diseases but also for any other genetic diseases, which may accelerate our deeper understanding of disease mechanisms and cell-based screening for therapeutic drugs.
Collapse
Affiliation(s)
- Tomoyuki Ohno
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Takeshi Nakane
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Taichi Akase
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Hikaru Kurasawa
- School of Life Science and Technology, Tokyo Institute of Technology
- Kanagawa Institute of Industrial Science and Technology
| | - Yasunori Aizawa
- School of Life Science and Technology, Tokyo Institute of Technology
- Kanagawa Institute of Industrial Science and Technology
| |
Collapse
|
4
|
Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—Targeting autophagy in aging. Front Aging Neurosci 2023; 15:1125739. [PMID: 37065462 PMCID: PMC10090449 DOI: 10.3389/fnagi.2023.1125739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
Collapse
Affiliation(s)
- Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Anoir Abbas
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Balázs Kis
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Karolina Pircs
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Karolina Pircs,
| |
Collapse
|
5
|
Qin Y, Li S, Li XJ, Yang S. CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy. Neurosci Bull 2022; 38:1397-1408. [PMID: 35608753 PMCID: PMC9672252 DOI: 10.1007/s12264-022-00880-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing. Being simple to use and highly efficient, CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment. Here, we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.
Collapse
Affiliation(s)
- Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
7
|
Kaye J, Reisine T, Finkbeiner S. Huntington's disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac Rev 2022; 11:16. [PMID: 35865413 PMCID: PMC9264339 DOI: 10.12703/r/11-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A major advance in the study of Huntington's disease (HD) has been the development of human disease models employing induced pluripotent stem cells (iPSCs) derived from patients with HD. Because iPSCs provide an unlimited source of cells and can be obtained from large numbers of HD patients, they are a uniquely valuable tool for investigating disease mechanisms and for discovering potential disease-modifying therapeutics. Here, we summarize some of the important findings in HD pathophysiology that have emerged from studies of patient-derived iPSC lines. Because they retain the genome and actual disease mutations of the patient, they provide a cell source to investigate genetic contributions to the disease. iPSCs provide advantages over other disease models. While iPSC-based technology erases some epigenetic marks, newly developed transdifferentiation methods now let us investigate epigenetic factors that control expression of mutant huntingtin (mHTT). Human HD iPSC lines allow us to investigate how endogenous levels of mHTT affect cell health, in contrast to other models that often rely on overexpressing the protein. iPSCs can be differentiated into neurons and other disease-related cells such as astrocytes from different brain regions to study brain regional differences in the disease process, as well as the cell-cell dependencies involved in HD-associated neurodegeneration. They also serve as a tissue source to investigate factors that impact CAG repeat instability, which is involved in regional differences in neurodegeneration in the HD brain. Human iPSC models can serve as a powerful model system to identify genetic modifiers that may impact disease onset, progression, and symptomatology, providing novel molecular targets for drug discovery.
Collapse
Affiliation(s)
- Julia Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Karwacka M, Olejniczak M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022; 11:cells11030517. [PMID: 35159326 PMCID: PMC8834129 DOI: 10.3390/cells11030517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine (polyQ) diseases, including Huntington’s disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process. Here, we review how these tools have been used to correct disease-causing mutations or create isogenic cell lines with different numbers of CAG repeats. We characterize various cellular models such as HEK 293 cells, patient-derived fibroblasts, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and animal models generated with the use of genome-editing technology.
Collapse
|
9
|
Grivennikov IA, Tarantul VZ. Genome Editing Technology for the Study and Correction of Neurodegenerative Diseases. NEUROCHEM J+ 2021. [DOI: 10.1134/s181971242104005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Medvedev SP, Malankhanova TB, Valetdinova KR, Zakian SM. Creation and Research of Cell Models of Hereditary Neurodegenerative Diseases Using Directed Genome Editing. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
13
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
14
|
Zhu X, Zhang Y, Yang X, Hao C, Duan H. Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions. Front Mol Neurosci 2021; 14:618171. [PMID: 34194298 PMCID: PMC8236824 DOI: 10.3389/fnmol.2021.618171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases (NDDs) is complex and diverse. Over the decades, our understanding of NDD has been limited to pathological features. However, recent advances in gene sequencing have facilitated elucidation of NDD at a deeper level. Gene editing techniques have uncovered new genetic links to phenotypes, promoted the development of novel treatment strategies and equipped researchers with further means to construct effective cell and animal models. The current review describes the history of evolution of gene editing tools, with the aim of improving overall understanding of this technology, and focuses on the four most common NDD disorders to demonstrate the potential future applications and research directions of gene editing.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang, China
| |
Collapse
|