1
|
Anderson HG, Takacs GP, Harrison JK, Rong L, Stepien TL. Optimal control of combination immunotherapy for a virtual murine cohort in a glioblastoma-immune dynamics model. J Theor Biol 2024; 595:111951. [PMID: 39307417 DOI: 10.1016/j.jtbi.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper, we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1 and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen. Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC death rate emerges as a long-term predictor of either disease-free survival or death.
Collapse
Affiliation(s)
- Hannah G Anderson
- Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, 32601, FL, USA.
| | - Gregory P Takacs
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, 32610, FL, USA.
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, 32610, FL, USA.
| | - Libin Rong
- Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, 32601, FL, USA.
| | - Tracy L Stepien
- Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, 32601, FL, USA.
| |
Collapse
|
2
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Bruhn H, Tavelin B, Rosenlund L, Henriksson R. Do presenting symptoms predict treatment decisions and survival in glioblastoma? Real-world data from 1458 patients in the Swedish brain tumor registry. Neurooncol Pract 2024; 11:652-659. [PMID: 39279780 PMCID: PMC11398927 DOI: 10.1093/nop/npae036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Background Glioblastoma is the most common malignant brain tumor in adults. Non-invasive clinical parameters could play a crucial role in treatment planning and serve as predictors of patient survival. Our register-based real-life study aimed to investigate the prognostic value of presenting symptoms. Methods Data on presenting symptoms and survival, as well as known prognostic factors, were retrieved for all glioblastoma patients in Sweden registered in the Swedish Brain Tumor Registry between 2018 and 2021. The prognostic impact of different presenting symptoms was calculated using the Cox proportional hazard model. Results Data from 1458 adults with pathologically verified IDH wild-type glioblastoma were analyzed. Median survival time was 345 days. The 2-year survival rate was 21.5%. Registered presenting symptoms were focal neurological deficits, cognitive dysfunction, headache, epilepsy, signs of raised intracranial pressure, and cranial nerve symptoms, with some patients having multiple symptoms. Patients with initial cognitive dysfunction had significantly shorter survival than patients without; 265 days (245-285) vs. 409 days (365-453; P < .001). The reduced survival remained after Cox regression adjusting for known prognostic factors. Patients presenting with seizures and patients with headaches had significantly longer overall survival compared to patients without these symptoms, but the difference was not retained in multivariate analysis. Patients with cognitive deficits were less likely to have radical surgery and to receive extensive anti-neoplastic nonsurgical treatment. Conclusions This extensive real-life study reveals that initial cognitive impairment acts as an independent negative predictive factor for treatment decisions and adversely affects survival outcomes in glioblastoma patients.
Collapse
Affiliation(s)
- Helena Bruhn
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Björn Tavelin
- Clinical Research Unit, Cancercentrum, Region Vasterbotten, Umea University Hospital, Umea, Sweden
| | | | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umea University Hospital, Umea, Sweden
| |
Collapse
|
4
|
Jun Wei JL, Kamarudin AA, Hong Soon B, Palaniandy K, Bakar AA, Thanabalan J, Athi Kumar RK, Jaafar AS, Paramasvaran S, Fadzil F, Abu N. Profiling of autoantibodies in the sera of glioblastoma patients. Immunotherapy 2024; 16:1049-1056. [PMID: 39263942 PMCID: PMC11492691 DOI: 10.1080/1750743x.2024.2390350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: This study aimed to determine the expression pattern of autoantibody proteins from the serum of grade IV glioblastoma patients.Materials & methods: We performed high throughput antibody profiling via the Sengenics i-Ome® Protein Array to determine the differentially expressed autoantibodies.Results: The results portrayed that anti-COL4A3BP and anti-HSP90AA1 were among the upregulated autoantibodies in glioblastoma sera.Conclusion: The selected autoantibodies offer promising targets for future glioblastoma pathogenesis. However, further validation is required to elucidate the autoantibody signature in glioblastoma patients.
Collapse
Affiliation(s)
- Johannes Low Jun Wei
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Bee Hong Soon
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Kamalanathan Palaniandy
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Azizi Abu Bakar
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ramesh Kumar Athi Kumar
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ainul Syahrilfazli Jaafar
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Sanmugarajah Paramasvaran
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Farizal Fadzil
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Anderson HG, Takacs GP, Harrison JK, Rong L, Stepien TL. Optimal control of combination immunotherapy for a virtual murine cohort in a glioblastoma-immune dynamics model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591725. [PMID: 39185154 PMCID: PMC11343105 DOI: 10.1101/2024.04.29.591725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper, we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1 and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen. Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC death rate emerges as a long-term predictor of either disease-free survival or death.
Collapse
Affiliation(s)
- Hannah G. Anderson
- Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, 32601, FL, USA
| | - Gregory P. Takacs
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, 32610, FL, USA
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, 32610, FL, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, 32601, FL, USA
| | - Tracy L. Stepien
- Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, 32601, FL, USA
| |
Collapse
|
6
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
7
|
Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103:e38245. [PMID: 38788009 PMCID: PMC11124608 DOI: 10.1097/md.0000000000038245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Collapse
Affiliation(s)
- Nasser M. Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan S. Alharbi
- Pharmacy Practice Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S. Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Cao J, Qing J, Zhu L, Chen Z. Role of TIM-1 in the development and treatment of tumours. Front Cell Dev Biol 2024; 12:1307806. [PMID: 38831760 PMCID: PMC11144867 DOI: 10.3389/fcell.2024.1307806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
T-cell immunoglobulin and mucin structural domain 1 (TIM-1, also known as hepatitis A virus cell receptor 1) is a co-stimulatory molecule that is expressed predominantly on the surface of T cells. TIM-1 promotes the activation and proliferation of T cells, cytokine secretion, and can also be overexpressed in various types of cancer. Upregulation of TIM-1 expression may be associated with the development and progression of cancer. After reviewing the literature, we propose that TIM-1 affects tumour development mainly through two pathways. In the Direct pathway: overexpression in tumours activates tumour-related signaling pathways, mediates the proliferation, apoptosis, invasion and metastasis, and directly affects tumour development directly. In the indirect pathway: In addition to changing the tumour microenvironment and influencing the growth of tumours, TIM-1 binds to ligands to encourage the activation, proliferation, and generation of cytokines by immune cells. This review examines how TIM-1 stimulates the development of tumours in direct and indirect ways, and how TIM-1 is exploited as a target for cancer therapy.
Collapse
Affiliation(s)
- Jinmeng Cao
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- School of Clinical Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Liya Zhu
- Graduate school, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhizhong Chen
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| |
Collapse
|
9
|
Pons-Escoda A, Majos C, Smits M, Oleaga L. Presurgical diagnosis of diffuse gliomas in adults: Post-WHO 2021 practical perspectives from radiologists in neuro-oncology units. RADIOLOGIA 2024; 66:260-277. [PMID: 38908887 DOI: 10.1016/j.rxeng.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 06/24/2024]
Abstract
The 2021 World Health Organization classification of CNS tumours was greeted with enthusiasm as well as an initial potential overwhelm. However, with time and experience, our understanding of its key aspects has notably improved. Using our collective expertise gained in neuro-oncology units in hospitals in different countries, we have compiled a practical guide for radiologists that clarifies the classification criteria for diffuse gliomas in adults. Its format is clear and concise to facilitate its incorporation into everyday clinical practice. The document includes a historical overview of the classifications and highlights the most important recent additions. It describes the main types in detail with an emphasis on their appearance on imaging. The authors also address the most debated issues in recent years. It will better prepare radiologists to conduct accurate presurgical diagnoses and collaborate effectively in clinical decision making, thus impacting decisions on treatment, prognosis, and overall patient care.
Collapse
Affiliation(s)
- A Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Facultat de Medicina i Ciencies de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - C Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Neuro-Oncology Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands; Medical Delta, Delft, The Netherlands
| | - L Oleaga
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
WADHWA KARAN, CHAUHAN PAYAL, KUMAR SHOBHIT, PAHWA RAKESH, VERMA RAVINDER, GOYAL RAJAT, SINGH GOVIND, SHARMA ARCHANA, RAO NEHA, KAUSHIK DEEPAK. Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier. Oncol Res 2024; 32:877-897. [PMID: 38686045 PMCID: PMC11056000 DOI: 10.32604/or.2024.047278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases, for example, PubMed, Science Direct, Google Scholar, and others, using specific keyword combinations, including "glioblastoma," "brain tumor," "nanocarriers," and several others. Conclusion This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management. Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed.
Collapse
Affiliation(s)
- KARAN WADHWA
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - PAYAL CHAUHAN
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - SHOBHIT KUMAR
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut, 250005, India
| | - RAKESH PAHWA
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - RAVINDER VERMA
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - RAJAT GOYAL
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - GOVIND SINGH
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - ARCHANA SHARMA
- Delhi Pharmaceutical Sciences and Research University (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - NEHA RAO
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - DEEPAK KAUSHIK
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
11
|
Mustafov D, Siddiqui SS, Klena L, Karteris E, Braoudaki M. SV2B/miR-34a/miR-128 axis as prognostic biomarker in glioblastoma multiforme. Sci Rep 2024; 14:6647. [PMID: 38503772 PMCID: PMC10951322 DOI: 10.1038/s41598-024-55917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Glioblastoma (GBM) is a heterogenous primary brain tumour that is characterised with unfavourable patient prognosis. The identification of biomarkers for managing brain malignancies is of utmost importance. MicroRNAs (miRNAs) are small, non-coding RNAs implicated in cancer development. This study aimed to assess the prognostic significance of miRNAs and their gene targets in GBM. An in silico approach was employed to investigate the differentially expressed miRNAs in GBM. The most dysregulated miRNAs were identified and analysed via Sfold in association with their gene target. The candidate gene was studied via multi-omics approaches, followed by in vitro and in vivo experiments. The in silico analyses revealed that miR-128a and miR-34a were significantly downregulated within GBM. Both miRNAs displayed high binding affinity to the synaptic vesicle glycoprotein 2B (SV2B) 3' untranslated region (3'UTR). SV2B exhibited upregulation within brain regions with high synaptic activity. Significantly higher SV2B levels were observed in high grade brain malignancies in comparison to their normal counterparts. SV2B expression was observed across the cytoplasm of GBM cells. Our findings underscored the downregulated expression patterns of miR-128a and miR-34a, alongside the upregulation of SV2B in GBM suggesting the importance of the SV2B/miR-34a/miR-128 axis as a potential prognostic approach in GBM management.
Collapse
Affiliation(s)
- D Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - S S Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK
| | - L Klena
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK
| | - E Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - M Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK.
| |
Collapse
|
12
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
13
|
Ezzati S, Salib S, Balasubramaniam M, Aboud O. Epidermal Growth Factor Receptor Inhibitors in Glioblastoma: Current Status and Future Possibilities. Int J Mol Sci 2024; 25:2316. [PMID: 38396993 PMCID: PMC10889328 DOI: 10.3390/ijms25042316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma, a grade 4 glioma as per the World Health Organization, poses a challenge in adult primary brain tumor management despite advanced surgical techniques and multimodal therapies. This review delves into the potential of targeting epidermal growth factor receptor (EGFR) with small-molecule inhibitors and antibodies as a treatment strategy. EGFR, a mutationally active receptor tyrosine kinase in over 50% of glioblastoma cases, features variants like EGFRvIII, EGFRvII and missense mutations, necessitating a deep understanding of their structures and signaling pathways. Although EGFR inhibitors have demonstrated efficacy in other cancers, their application in glioblastoma is hindered by blood-brain barrier penetration and intrinsic resistance. The evolving realm of nanodrugs and convection-enhanced delivery offers promise in ensuring precise drug delivery to the brain. Critical to success is the identification of glioblastoma patient populations that benefit from EGFR inhibitors. Tools like radiolabeled anti-EGFR antibody 806i facilitate the visualization of EGFR conformations, aiding in tailored treatment selection. Recognizing the synergistic potential of combination therapies with downstream targets like mTOR, PI3k, and HDACs is pivotal for enhancing EGFR inhibitor efficacy. In conclusion, the era of precision oncology holds promise for targeting EGFR in glioblastoma, contingent on tailored treatments, effective blood-brain barrier navigation, and the exploration of synergistic therapies.
Collapse
Affiliation(s)
- Shawyon Ezzati
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | - Samuel Salib
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | | | - Orwa Aboud
- Department of Neurology, Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
De Simone M, Conti V, Palermo G, De Maria L, Iaconetta G. Advancements in Glioma Care: Focus on Emerging Neurosurgical Techniques. Biomedicines 2023; 12:8. [PMID: 38275370 PMCID: PMC10813759 DOI: 10.3390/biomedicines12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Despite significant advances in understanding the molecular pathways of glioma, translating this knowledge into effective long-term solutions remains a challenge. Indeed, gliomas pose a significant challenge to neurosurgical oncology because of their diverse histopathological features, genetic heterogeneity, and clinical manifestations. Relevant sections: This study focuses on glioma complexity by reviewing recent advances in their management, also considering new classification systems and emerging neurosurgical techniques. To bridge the gap between new neurosurgical approaches and standards of care, the importance of molecular diagnosis and the use of techniques such as laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) are emphasized, exploring how the integration of molecular knowledge with emerging neurosurgical approaches can personalize and improve the treatment of gliomas. CONCLUSIONS The choice between LITT and FUS should be tailored to each case, considering factors such as tumor characteristics and patient health. LITT is favored for larger, complex tumors, while FUS is standard for smaller, deep-seated ones. Both techniques are equally effective for small and superficial tumors. Our study provides clear guidance for treating pediatric low-grade gliomas and highlights the crucial roles of LITT and FUS in managing high-grade gliomas in adults. This research sets the stage for improved patient care and future developments in the field of neurosurgery.
Collapse
Affiliation(s)
- Matteo De Simone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Giuseppina Palermo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Lucio De Maria
- Unit of Neurosurgery, Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy;
- Unit of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland
| | - Giorgio Iaconetta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
15
|
Kim E, Fortoul MC, Weimer D, Meggyesy M, Demory Beckler M. Co-occurrence of glioma and multiple sclerosis: Prevailing theories and emerging therapies. Mult Scler Relat Disord 2023; 79:105027. [PMID: 37801959 DOI: 10.1016/j.msard.2023.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Though the concurrence of primary brain tumors and multiple sclerosis (MS) is exceedingly rare, instances have been noted in the literature as early as 1949. Given these observations, researchers have proposed various ideas as to how these malignancies may be linked to MS. Due to insufficient data, none have gained traction or been widely accepted amongst neurologists or neuro-oncologists. What is abundantly clear, however, is the mounting uncertainty faced by clinicians when caring for these individuals. Concerns persist about the potential for disease modifying therapies (DMTs) to initiate or promote tumor growth and progression, and to date, there are no approved treatments capable of mitigating both MS disease activity and tumor growth, let alone established guidelines that clinicians may refer to. Collectively, these gaps in the literature impose limitations to optimizing the care and management of this population. As such, our hope is to stimulate further discussion of this topic and prompt future investigations to explore novel treatment options and advance our understanding of these concurrent disease processes. To this end, the chief objective of this article is to evaluate proposed ideas of how the diseases may be linked, outline emerging therapies for both MS and brain tumors, and describe evidence-based approaches to diagnosing and treating this patient population.
Collapse
Affiliation(s)
- Enoch Kim
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Marla C Fortoul
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Derek Weimer
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Michael Meggyesy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle Demory Beckler
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
16
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Ziani-Zeryouh A, Wouters R, Thirion G, Vandenbrande K, Vankerckhoven A, Berckmans Y, Bevers S, Verbeeck J, De Keersmaecker K, Coosemans A, Riva M. Toward more accurate preclinical glioblastoma modeling: Reverse translation of clinical standard of care in a glioblastoma mouse model. Methods Cell Biol 2023; 183:381-397. [PMID: 38548420 DOI: 10.1016/bs.mcb.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) is the deadliest of all brain cancers. GBM patients receive an intensive treatment schedule consisting of surgery, radiotherapy and chemotherapy, which only modestly extends patient survival. Therefore, preclinical studies are testing novel experimental treatments. In such preclinical studies, these treatments are administered as monotherapy in the majority of cases; conversely, in patients the new treatments are always combined with the standard of care. Most likely, this difference contributes to the failure of clinical trials despite the successes of the preclinical studies. In this methodological study, we show in detail how to implement the full clinical standard of care in preclinical GBM research. Systematically testing new treatments, including cellular immunotherapies, in combination with the clinical standard of care can result in a better translation of preclinical results to the clinic and ultimately increase patient survival.
Collapse
Affiliation(s)
- Aaron Ziani-Zeryouh
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Oncoinvent, A.S., Oslo, Norway
| | - Gitte Thirion
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Katja Vandenbrande
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sien Bevers
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jelle Verbeeck
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| | - Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Neurosurgery, Mont-Godinne Hospital, UCL Namur, Yvoir, Belgium
| |
Collapse
|
18
|
Asl NS, Behfar M, Amiri RS, Mohseni R, Azimi M, Firouzi J, Faranoush M, Izadpanah A, Mohmmad M, Hamidieh AA, Habibi Z, Ebrahimi M. Intra-lesion injection of activated Natural Killer (NK) cells in recurrent malignant brain tumors. Int Immunopharmacol 2023; 120:110345. [PMID: 37267858 DOI: 10.1016/j.intimp.2023.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Despite multi-modal therapies for patients with malignant brain tumors, their median survival is < 2 years. Recently, NK cells have provided cancer immune surveillance through their direct natural cytotoxicity and by modulating dendritic cells to enhance the presentation of tumor antigens and regulate T-cell-mediated antitumor responses. However, the success of this treatment modality in brain tumors is unclear. The main reasons are; the brain tumor microenvironment, the NK cell preparations and administration, and the donor selection. Our previous study showed that intracranial injection of activated haploidentical NK cells resulted in the eradication of glioblastoma tumor mass in the animal model without any evidence of tumor recurrence. Therefore, in the present study, we evaluated the safety of intra-surgical cavity or intra cerebrospinal fluid (CSF) Injectionofex vivoactivated haploidentical NK cells in six patients with recurrent glioblastoma multiform (GBM) and malignant brain tumors resistance to chemo/radiotherapy. Our results indicated that activated haploidentical NK cells express activator and inhibitor markers and can kill the tumor cells. However, their cytotoxic potential on patient-derived GBM (PD-GBM) was more than that of its cell line. Also, their infusion increased the overall disease control rate by about 33.3%, with a mean survival of 400 days. Moreover, we showed that local administration of the activated haploidentical NK cells in malignant brain tumors is safe, feasible, tolerated at higher doses, and cost-effective.
Collapse
Affiliation(s)
- Niloufar Shayan Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Shams Amiri
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Monireh Mohmmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Habibi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Comincini S, Manai F, Sorrenti M, Perteghella S, D’Amato C, Miele D, Catenacci L, Bonferoni MC. Development of Berberine-Loaded Nanoparticles for Astrocytoma Cells Administration and Photodynamic Therapy Stimulation. Pharmaceutics 2023; 15:pharmaceutics15041078. [PMID: 37111564 PMCID: PMC10146331 DOI: 10.3390/pharmaceutics15041078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Berberine (BBR) is known for its antitumor activity and photosensitizer properties in anti-cancer photodynamic therapy (PDT), and it has previously been favorably assayed against glioblastoma multiforme (GBM)-derived cells. In this work, two BBR hydrophobic salts, dodecyl sulfate (S) and laurate (L), have been encapsulated in PLGA-based nanoparticles (NPs), chitosan-coated by the addition of chitosan oleate in the preparation. NPs were also further functionalized with folic acid. All the BBR-loaded NPs were efficiently internalized into T98G GBM established cells, and internalization increased in the presence of folic acid. However, the highest mitochondrial co-localization percentages were obtained with BBR-S NPs without folic acid content. In the T98G cells, BBR-S NPs appeared to be the most efficient in inducing cytotoxicity events and were therefore selected to assess the effect of photodynamic stimulation (PDT). As a result, PDT potentiated the viability reduction for the BBR-S NPs at all the studied concentrations, and a roughly 50% reduction of viability was obtained. No significant cytotoxic effect on normal rat primary astrocytes was observed. In GBM cells, a significant increase in early and late apoptotic events was scored by BBR NPs, with a further increase following the PDT scheme. Furthermore, a significantly increased depolarization of mitochondria was highlighted following BBR-S NPs’ internalization and mostly after PDT stimulation, compared to untreated and PDT-only treated cells. In conclusion, these results highlighted the efficacy of the BBR-NPs-based strategy coupled with photoactivation approaches to induce favorable cytotoxic effects in GBM cells.
Collapse
|
20
|
Exploring the Past, Present, and Future of Anti-Angiogenic Therapy in Glioblastoma. Cancers (Basel) 2023; 15:cancers15030830. [PMID: 36765787 PMCID: PMC9913517 DOI: 10.3390/cancers15030830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malignant tumors of the central nervous system. Despite technological advancements and aggressive multimodal treatment, prognosis remains dismal. The highly vascularized nature of glioblastoma enables the tumor cells to grow and invade the surrounding tissue, and vascular endothelial growth factor-A (VEGF-A) is a critical mediator of this process. Therefore, over the past decade, angiogenesis, and more specifically, the VEGF signaling pathway, has emerged as a therapeutic target for glioblastoma therapy. This led to the FDA approval of bevacizumab, a monoclonal antibody designed against VEGF-A, for treatment of recurrent glioblastoma. Despite the promising preclinical data and its theoretical effectiveness, bevacizumab has failed to improve patients' overall survival. Furthermore, several other anti-angiogenic agents that target the VEGF signaling pathway have also not demonstrated survival improvement. This suggests the presence of other compensatory angiogenic signaling pathways that surpass the anti-angiogenic effects of these agents and facilitate vascularization despite ongoing VEGF signaling inhibition. Herein, we review the current state of anti-angiogenic agents, discuss potential mechanisms of anti-angiogenic resistance, and suggest potential avenues to increase the efficacy of this therapeutic approach.
Collapse
|
21
|
Cystic Glioblastoma: A Mimicker of Infection? A Case Report and Literature Review. Case Rep Oncol Med 2023; 2023:7348188. [PMID: 36704640 PMCID: PMC9873443 DOI: 10.1155/2023/7348188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent malignant and aggressive type of glioma. Most cases of GBM present as a single solitary solid tumor; however, there are rare instances in which it may present as a cystic lesion. Here, we report an even rarer case of GBM presenting as bilateral multicystic lesions, mimicking infectious etiology. Our case highlights the importance of identifying clinical features of cystic GBM to ensure early diagnosis and treatment. A literature review was conducted in PubMed, looking at the common characteristics and treatment options for cystic GBM.
Collapse
|
22
|
Cabrera-Maqueda JM, Fonseca E, Sepulveda M, Camós-Carreras A, Blanco Y. Teaching NeuroImage: Glioblastoma Multiforme Presenting as Optic Neuropathy. Neurology 2023; 100:94-96. [PMID: 36257708 DOI: 10.1212/wnl.0000000000201480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jose Maria Cabrera-Maqueda
- From the Center of Neuroimmunology (J.M.C.-M., M.S., Y.B.), Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile; and Department of Ophtalmology (A.C.-C.), Hospital Clinic of Barcelona, Spain
| | - Elianet Fonseca
- From the Center of Neuroimmunology (J.M.C.-M., M.S., Y.B.), Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile; and Department of Ophtalmology (A.C.-C.), Hospital Clinic of Barcelona, Spain
| | - Maria Sepulveda
- From the Center of Neuroimmunology (J.M.C.-M., M.S., Y.B.), Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile; and Department of Ophtalmology (A.C.-C.), Hospital Clinic of Barcelona, Spain.
| | - Anna Camós-Carreras
- From the Center of Neuroimmunology (J.M.C.-M., M.S., Y.B.), Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile; and Department of Ophtalmology (A.C.-C.), Hospital Clinic of Barcelona, Spain
| | - Yolanda Blanco
- From the Center of Neuroimmunology (J.M.C.-M., M.S., Y.B.), Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile; and Department of Ophtalmology (A.C.-C.), Hospital Clinic of Barcelona, Spain
| |
Collapse
|
23
|
Deacu M, Docu Axelerad A, Popescu S, Topliceanu TS, Aschie M, Bosoteanu M, Cozaru GC, Cretu AM, Voda RI, Orasanu CI. Aggressiveness of Grade 4 Gliomas of Adults. Clin Pract 2022; 12:701-713. [PMID: 36136867 PMCID: PMC9498876 DOI: 10.3390/clinpract12050073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Grade 4 adult gliomas are IDH-mutant astrocytomas and IDH-wildtype glioblastomas. They have a very high mortality rate, with survival at 5 years not exceeding 5%. We aimed to conduct a clinical imaging and morphogenetic characterization of them, as well as to identify the main negative prognostic factors that give them such aggressiveness. We conducted a ten-year retrospective study. We followed the clinical, imaging, and morphogenetic aspects of the cases. We analyzed immunohistochemical markers (IDH1, Ki-67, and nestin) and FISH tests based on the CDKN2A gene. The obtained results were analyzed using SPSS Statistics with the appropriate parameters. The clinical aspects representing negative prognostic factors were represented by patients’ comorbidities: hypertension (HR = 1.776) and diabetes mellitus/hyperglycemia (HR = 2.159). The lesions were mostly supratentorial, and the temporal lobe was the most affected. The mean volume was 88.05 cm3 and produced a midline shift with an average of 8.52 mm. Subtotal surgical resection was a negative prognostic factor (HR = 1.877). The proliferative index did not influence survival rate, whereas CDKN2A gene mutations were shown to have a major impact on survival. We identified the main negative prognostic factors that support the aggressiveness of grade 4 gliomas: patient comorbidities, type of surgical resection, degree of cell differentiation, and CDKN2A gene mutations.
Collapse
Affiliation(s)
- Mariana Deacu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Any Docu Axelerad
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Neurology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Steliana Popescu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Radiology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Theodor Sebastian Topliceanu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
| | - Mariana Aschie
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Academy of Medical Sciences of Romania, 030167 Bucharest, Romania
| | - Madalina Bosoteanu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
- Clinical Service of Pathology, Departments of Genetics, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Ana Maria Cretu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
- Correspondence: ; Tel.: +40-72-281-4037
| |
Collapse
|
24
|
Enhanced Delivery of Rose Bengal by Amino Acids Starvation and Exosomes Inhibition in Human Astrocytoma Cells to Potentiate Anticancer Photodynamic Therapy Effects. Cells 2022; 11:cells11162502. [PMID: 36010578 PMCID: PMC9406355 DOI: 10.3390/cells11162502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer strategy based on the light energy stimulation of photosensitizers (PS) molecules within a malignant cell. Among a multitude of recently challenged PS, Rose bengal (RB) has been already reported as an inducer of cytotoxicity in different tumor cells. However, RB displays a low penetration capability across cell membranes. We have therefore developed a short-term amino acids starvation protocol that significantly increases RB uptake in human astrocytoma cells compared to normal rat astrocytes. Following induced starvation uptake, RB is released outside cells by the exocytosis of extracellular vesicles (EVs). Thus, we have introduced a specific pharmacological treatment, based on the GW4869 exosomes inhibitor, to interfere with RB extracellular release. These combined treatments allow significantly reduced nanomolar amounts of administered RB and a decrease in the time interval required for PDT stimulation. The overall conditions affected astrocytoma viability through the activation of apoptotic pathways. In conclusion, we have developed for the first time a combined scheme to simultaneously increase the RB uptake in human astrocytoma cells, reduce the extracellular release of the drug by EVs, and improve the effectiveness of PDT-based treatments. Importantly, this strategy might be a valuable approach to efficiently deliver other PS or chemotherapeutic drugs in tumor cells.
Collapse
|
25
|
Anticancer Activities of 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c] quinolin-11-one (SJ10) in Glioblastoma Multiforme (GBM) Chemoradioresistant Cell Cycle-Related Oncogenic Signatures. Cancers (Basel) 2022; 14:cancers14010262. [PMID: 35008426 PMCID: PMC8750065 DOI: 10.3390/cancers14010262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) remains to be the most frequent malignant tumor of the central nervous system (CNS), which accounts for approximately 54% of all primary brain gliomas. Current treatment modalities for GBM include surgical resection, followed by radiotherapy and chemotherapy with temozolomide (TMZ). However, due to its genetic heterogeneity, GBM tumors always recur, due to treatment reasistance. The aim of this study was to identify molecular gene signatures, responsible for cancer initiation, progression, resistances and to treatment, metastasis, and also evaluate the potency of our novel compounds SJ10 as potential target for CCNB1/CDC42/MAPK7/CD44 oncogenic signatures. Accordingly, we used computational simulation and identify these signatures as regulators of the cell cycle in GBM, which leads to cancer development and metastasis. We also showed the antiproliferative and cytotoxic effects of SJ10 compound against a panel of NCI-60 cancer cell lines. This suggests the potential of the compounds to inhibit CCNB1/CDC42/MAPK7/CD44 in GBM. Abstract Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which may potentially lead to resistance to radiation. Through computational simulations using bioinformatics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Overexpression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and metastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate activation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote resistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we identified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle through the G1 phase in GBM tissues. This therefore suggests crosstalk among CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory activities against these oncogenes as observed from molecular docking analysis.
Collapse
|
26
|
Long C, Yuan L, Wei W, Li J. Overcoming chemoresistance in glioblastoma by fluvastatin via prenylation-dependent inhibition of Ras signaling. Hum Exp Toxicol 2022; 41:9603271221125934. [PMID: 36171180 DOI: 10.1177/09603271221125934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The resistance of glioblastoma to chemotherapy remains a significant clinical problem. Targeting alternative pathways such as protein prenylation is known to be effective against many cancers. Fluvastatin is a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl- CoA (HMG-CoA) reductase, thereby inhibits prenylation. We demonstrate that fluvastatin alone effectively inhibits proliferation and induces apoptosis in multiple human glioblastoma cell lines. The combination index analysis shows that fluvastatin acts synergistically with common chemotherapy drugs for glioblastoma: temozolomide and irinotecan. We further show that fluvastatin acts on glioblastoma through inhibiting prenylation-dependent Ras activation. The combination of fluvastatin and low dose temozolomide resulted in remarkable inhibition of glioblastoma tumor in mice throughout the whole treatment duration without causing toxicity. Such combinatorial effects provide the basis for utilizing these FDA-approved drugs as a potential clinical approach in overcoming resistance and improving glioblastoma treatment.
Collapse
Affiliation(s)
- Cheng Long
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Limei Yuan
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Wei Wei
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Jingwen Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| |
Collapse
|
27
|
Bouchè V, Aldegheri G, Donofrio CA, Fioravanti A, Roberts-Thomson S, Fox SB, Schettini F, Generali D. BRAF Signaling Inhibition in Glioblastoma: Which Clinical Perspectives? Front Oncol 2021; 11:772052. [PMID: 34804975 PMCID: PMC8595319 DOI: 10.3389/fonc.2021.772052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
IDH-wild type (wt) glioblastoma (GB) accounts for approximately 90% of all GB and has a poor outcome. Surgery and adjuvant therapy with temozolomide and radiotherapy is the main therapeutic approach. Unfortunately, after relapse and progression, which occurs in most cases, there are very limited therapeutic options available. BRAF which plays a role in the oncogenesis of several malignant tumors, is also involved in a small proportion of IDH-wt GB. Previous successes with anti-B-Raf targeted therapy in tumors with V600E BRAF mutation like melanoma, combined with the poor prognosis and paucity of therapeutic options for GB patients is leading to a growing interest in the potential efficacy of this approach. This review is thus focused on dissecting the state of the art and future perspectives on BRAF pathway inhibition in IDH-wt GB. Overall, clinical efficacy is mostly described within case reports and umbrella trials, with promising but still insufficient results to draw more definitive conclusions. Further studies are needed to better define the molecular and phenotypic features that predict for a favorable response to treatment. In addition, limitations of B-Raf-inhibitors, in monotherapy or in combination with other therapeutic partners, to penetrate the blood-brain barrier and the development of acquired resistance mechanisms responsible for tumor progression need to be addressed.
Collapse
Affiliation(s)
- Victoria Bouchè
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Giovanni Aldegheri
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Carmine Antonio Donofrio
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Antonio Fioravanti
- Medical Oncology and Translational Research Unit, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| | | | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
- Unit of Neurosurgery, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| |
Collapse
|
28
|
Carriero F, Martinelli C, Gabriele F, Barbieri G, Zanoletti L, Milanesi G, Casali C, Azzalin A, Manai F, Paolillo M, Comincini S. Berberine Photo-Activation Potentiates Cytotoxicity in Human Astrocytoma Cells through Apoptosis Induction. J Pers Med 2021; 11:942. [PMID: 34683083 PMCID: PMC8541605 DOI: 10.3390/jpm11100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has recently attracted interest as an innovative and adjuvant treatment for different cancers including malignant gliomas. Among these, Glioblastoma (GBM) is the most prevalent neoplasm in the central nervous system. Despite conventional therapeutic approaches that include surgical removal, radiation, and chemotherapy, GBM is characterized by an extremely poor prognosis and a high rate of recurrence. PDT is a physical process that induces tumor cell death through the genesis and accumulation of reactive oxygen species (ROS) produced by light energy interaction with a photosensitizing agent. In this contribution, we explored the potentiality of the plant alkaloid berberine (BBR) as a photosensitizing and cytotoxic agent coupled with a PDT scheme using a blue light source in human established astrocytoma cell lines. Our data mainly indicated for the combined BBR-PDT scheme a potent activation of the apoptosis pathway, through a massive ROS production, a great extent of mitochondria depolarization, and the sub-sequent activation of caspases. Altogether, these results demonstrated that BBR is an efficient photosensitizer agent and that its association with PDT may be a potential anticancer strategy for high malignant gliomas.
Collapse
Affiliation(s)
- Francesca Carriero
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Carolina Martinelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
- SKYTEC Srl, 20147 Milan, Italy
| | - Fabio Gabriele
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Lisa Zanoletti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Gloria Milanesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Claudio Casali
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Federico Manai
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| | - Mayra Paolillo
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.C.); (C.M.); (F.G.); (G.B.); (L.Z.); (G.M.); (C.C.); (A.A.); (F.M.)
| |
Collapse
|
29
|
Colamaria A, Blagia M, Sacco M, Carbone F. Diffuse vertebral metastases from glioblastoma with vertebroepidural diffusion: A case report and review of the literature. Surg Neurol Int 2021; 12:437. [PMID: 34513200 PMCID: PMC8422500 DOI: 10.25259/sni_538_2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/08/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The occurrence of extraneural metastasis in patients diagnosed with glioblastoma (GBM) is rare with an estimated incidence ranging from 0.4% to 2.0%. Short clinical history is believed to be a possible explanation of the paucity of such cases. Furthermore, to date, only few papers describe cases of vertebral metastases from GBM without evidence of synchronous visceral involvement. Case Description: The authors report on the case of a 46-year-old woman presenting with a history of surgically treated GBM who developed multiple metastases located in the posterior laminae and vertebral bodies with a single dural metastasis at D6-D8 level 5 years after the initial diagnosis. Total-body computed tomography did not show signs of either intracranial recurrence or visceral involvement. Postoperative pathological examination confirmed the diagnosis of the World Health Organization-2016 Grade IV GBM metastases. Conclusion: From a clinical point of view, the awareness of the possibility of spinal and vertebral metastasis from intracranial GBM is crucial. The present case demonstrates that distant dissemination from the primary tumor is possible despite the absence of intracranial recurrence.
Collapse
Affiliation(s)
| | - Maria Blagia
- Department of Neurosurgery, University of Bari, Bari, Puglia, Italy
| | - Matteo Sacco
- Department of Neurosurgery, University of Foggia, Foggia, Italy
| | | |
Collapse
|