1
|
Jin Z, Wang X, Zhang X, Cheng S, Liu Y. Identification of two heterogeneous subtypes of hepatocellular carcinoma with distinct pathway activities and clinical outcomes based on gene set variation analysis. Front Genet 2024; 15:1441189. [PMID: 39323867 PMCID: PMC11423295 DOI: 10.3389/fgene.2024.1441189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background High heterogeneity is an essential feature of malignant tumors. This study aims to reveal the drivers of hepatocellular carcinoma heterogeneity for prognostic stratification and to guide individualized treatment. Methods Omics data and clinical data for two HCC cohorts were derived from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Atlas (ICGC), respectively. CNV data and methylation data were downloaded from the GSCA database. GSVA was used to estimate the transcriptional activity of KEGG pathways, and consensus clustering was used to categorize the HCC samples. The pRRophetic package was used to predict the sensitivity of samples to anticancer drugs. TIMER, MCPcounter, quanTIseq, and TIDE algorithms were used to assess the components of TME. LASSO and COX analyses were used to establish a prognostic gene signature. The biological role played by genes in HCC cells was confirmed by in vitro experiments. Results We classified HCC tissues into two categories based on the activity of prognostic pathways. Among them, the transcriptional profile of cluster A HCC is similar to that of normal tissue, dominated by cancer-suppressive metabolic pathways, and has a better prognosis. In contrast, cluster B HCC is dominated by high proliferative activity and has significant genetic heterogeneity. Meanwhile, cluster B HCC is often poorly differentiated, has a high rate of serum AFP positivity, is prone to microvascular invasion, and has shorter overall survival. In addition, we found that mutations, copy number variations, and aberrant methylation were also crucial drivers of the differences in heterogeneity between the two HCC subtypes. Meanwhile, the TME of the two HCC subtypes is also significantly different, which offers the possibility of precision immunotherapy for HCC patients. Finally, based on the prognostic value of molecular subtypes, we developed a gene signature that could accurately predict patients' OS. The riskscore quantified by the signature could evaluate the heterogeneity of HCC and guide clinical treatment. Finally, we confirmed through in vitro experiments that RFPL4B could promote the progression of Huh7 cells. Conclusion The molecular subtypes we identified effectively exposed the heterogeneity of HCC, which is important for discovering new effective therapeutic targets.
Collapse
Affiliation(s)
- Zhipeng Jin
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xue Zhang
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Siqi Cheng
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yefu Liu
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Dai L, Fan G, Xie T, Li L, Tang L, Chen H, Shi Y, Han X. Single-cell and spatial transcriptomics reveal a high glycolysis B cell and tumor-associated macrophages cluster correlated with poor prognosis and exhausted immune microenvironment in diffuse large B-cell lymphoma. Biomark Res 2024; 12:58. [PMID: 38840205 PMCID: PMC11155084 DOI: 10.1186/s40364-024-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy characterized by varied responses to treatment and prognoses. Understanding the metabolic characteristics driving DLBCL progression is crucial for developing personalized therapies. METHODS This study utilized multiple omics technologies including single-cell transcriptomics (n = 5), bulk transcriptomics (n = 966), spatial transcriptomics (n = 10), immunohistochemistry (n = 34), multiple immunofluorescence (n = 20) and to elucidate the metabolic features of highly malignant DLBCL cells and tumor-associated macrophages (TAMs), along with their associated tumor microenvironment. Metabolic pathway analysis facilitated by scMetabolism, and integrated analysis via hdWGCNA, identified glycolysis genes correlating with malignancy, and the prognostic value of glycolysis genes (STMN1, ENO1, PKM, and CDK1) and TAMs were verified. RESULTS High-glycolysis malignant DLBCL tissues exhibited an immunosuppressive microenvironment characterized by abundant IFN_TAMs (CD68+CXCL10+PD-L1+) and diminished CD8+ T cell infiltration. Glycolysis genes were positively correlated with malignancy degree. IFN_TAMs exhibited high glycolysis activity and closely communicating with high-malignancy DLBCL cells identified within datasets. The glycolysis score, evaluated by seven genes, emerged as an independent prognostic factor (HR = 1.796, 95% CI: 1.077-2.995, p = 0.025 and HR = 2.631, 95% CI: 1.207-5.735, p = 0.015) along with IFN_TAMs were positively correlated with poor survival (p < 0.05) in DLBCL. Immunohistochemical validation of glycolysis markers (STMN1, ENO1, PKM, and CDK1) and multiple immunofluorescence validation of IFN_TAMs underscored their prognostic value (p < 0.05) in DLBCL. CONCLUSIONS This study underscores the significance of glycolysis in tumor progression and modulation of the immune microenvironment. The identified glycolysis genes and IFN_TAMs represent potential prognostic markers and therapeutic targets in DLBCL.
Collapse
Affiliation(s)
- Liyuan Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
3
|
Yang D, Hu Y, Yang J, Tao L, Su Y, Wu Y, Yao Y, Wang S, Ye S, Xu T. Research Progress on the Correlation between Acetaldehyde Dehydrogenase 2 and Hepatocellular Carcinoma Development. J Pharmacol Exp Ther 2024; 389:163-173. [PMID: 38453527 DOI: 10.1124/jpet.123.001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.
Collapse
Affiliation(s)
- Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Junfa Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Liangsong Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yue Su
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yincui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Sheng Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| |
Collapse
|
4
|
Katoueezadeh M, Maleki P, Torabizadeh SA, Farsinejad A, Khalilabadi RM, Valandani HM, Nurain IO, Ashoub MH, Fatemi A. Combinatorial targeting of telomerase and DNA-PK induces synergistic apoptotic effects against Pre-B acute lymphoblastic leukemia cells. Mol Biol Rep 2024; 51:163. [PMID: 38252348 DOI: 10.1007/s11033-023-09087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the high demand for novel approaches for leukemia-targeted therapy, this study investigates the impact of DNA-PK inhibitor NU7441 on the sensitivity of pre-B ALL cells to the telomerase inhibitor MST-312. METHODS The study involved NALM-6 cells treated with MST-312 and NU7441, assessing their viability and metabolic activity using trypan blue and MTT assays. The study also evaluated apoptosis, gene expression changes, and DNA damage using flow cytometry, qRT-PCR, and micronucleus assays. The binding energy of MST-312 in the active site of telomerase was calculated using molecular docking. RESULTS The study's findings revealed a synergistic decline in both cell viability and metabolic activity in NALM-6 cells when exposed to the combined treatment of MST-312 and NU7441, and this decrease occurred without any adverse effects on healthy PBMC cells. Furthermore, the combination treatment exhibited a significantly higher induction of apoptosis than treatment with MST-312 alone, as observed through flow cytometry assay. qRT-PCR analysis revealed that this enhanced apoptosis was associated with a notable downregulation of Bcl-2 expression and an upregulation of Bax gene expression. Moreover, the combination therapy decreased expression levels of hTERT and c-Myc genes. The micronucleus assay indicated that the combination treatment increased DNA damage in NALM-6 cells. Also, a good conformation between MST-312 and the active site of telomerase was revealed by docking data. CONCLUSIONS The study suggests that simultaneous inhibition of telomerase and DNA-PK in pre-B ALL presents a novel targeted therapy approach.
Collapse
Affiliation(s)
- Maryam Katoueezadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Maleki
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hajar Mardani Valandani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ismaila Olanrewaju Nurain
- Postdoctoral Research Fellow, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
5
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
6
|
Tornesello ML, Tornesello AL, Starita N, Cerasuolo A, Izzo F, Buonaguro L, Buonaguro FM. Telomerase: a good target in hepatocellular carcinoma? An overview of relevant preclinical data. Expert Opin Ther Targets 2022; 26:767-780. [PMID: 36369706 DOI: 10.1080/14728222.2022.2147062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| | - Luigi Buonaguro
- Laboratory of Cancer Immunoregulation, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| |
Collapse
|
7
|
Sagmeister P, Daza J, Ofner A, Ziesch A, Ye L, Ben Khaled N, Ebert M, Mayerle J, Teufel A, De Toni EN, Munker S. Comparative Response of HCC Cells to TKIs: Modified in vitro Testing and Descriptive Expression Analysis. J Hepatocell Carcinoma 2022; 9:595-607. [PMID: 35845819 PMCID: PMC9278726 DOI: 10.2147/jhc.s356333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Although the treatment paradigm for hepatocellular carcinoma (HCC) has recently shifted in favour of checkpoint inhibitor (CPI)-based treatment options, the tyrosine kinase inhibitors (TKI) currently approved for the treatment of HCC are expected to remain the cornerstone of HCC treatment alone or in combination with CPIs. Despite considerable research efforts, no biomarker capable of predicting the response to specific TKIs has been validated. Thus, personalized approaches to HCC may aid in determining optimal treatment lines for 2nd and 3rd lines. To identify new biomarkers, we examined differential sensitivity and investigated potential transcriptomic predictors. Methods To this aim, the sensitivity of nine HCC cell lines to sorafenib, lenvatinib, regorafenib, and cabozantinib was evaluated by a prolonged treatment scheme to determine their respective growth rate inhibition concentrations (GR50). Subgroups discriminated by GR50 values underwent differential expression and gene set enrichment analysis (GSEA). Results The nine cell lines showed broadly different sensitivities to different TKIs. GR50 values of sorafenib and regorafenib clustered closer in all cell lines, whereas treatments with lenvatinib and cabozantinib showed diversified GR50 values. GSEA showed the activation of specific pathways in sensitive vs non-sensitive cell lines. A signature consisting of 14 biomarkers (GAGE12H, GJB6, PTCHD3, PRH1-PRR4, C6orf222, HBB, C17orf99, GOLGA6A, CRYAA, CCL23, RP11-347C12.3, RP11-514O12.4, FAM180B, and TMPRSS4) discriminates the cell lines' response into three distinct treatment profiles: 1) equally sensible to sorafenib, regorafenib and cabozantinib, 2) sensible to lenvatinib, and 3) more sensible to regorafenib than sorafenib. Conclusion We observed diverse responses to either of the four TKIs. Subgroup analysis of TKI effectiveness showed distinct transcriptomic profiles and signaling pathways associated with responsiveness. This prompts more extensive studies to explore and validate pharmacogenomic and transcriptomic strategies for a personalized treatment approach, particularly after the failure of CPI treatment.
Collapse
Affiliation(s)
| | - Jimmy Daza
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Wurttenberg, Germany
| | - Andrea Ofner
- Department of Medicine II, LMU Munich, Munich, Bavaria, Germany
| | - Andreas Ziesch
- Department of Medicine II, LMU Munich, Munich, Bavaria, Germany
| | - Liangtao Ye
- Department of Medicine II, LMU Munich, Munich, Bavaria, Germany
- Liver Center Munich, LMU Munich, Munich, Bavaria, Germany
- Center of Digestive Disease, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Najib Ben Khaled
- Department of Medicine II, LMU Munich, Munich, Bavaria, Germany
- Liver Center Munich, LMU Munich, Munich, Bavaria, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Wurttenberg, Germany
- Center for Preventive Medicine and Digital Health Baden-Württenberg (CPDBW), Heidelberg University, Mannheim, Baden Wurttenberg, Germany
| | - Julia Mayerle
- Department of Medicine II, LMU Munich, Munich, Bavaria, Germany
| | - Andreas Teufel
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Wurttenberg, Germany
- Center for Preventive Medicine and Digital Health Baden-Württenberg (CPDBW), Heidelberg University, Mannheim, Baden Wurttenberg, Germany
| | - Enrico N De Toni
- Department of Medicine II, LMU Munich, Munich, Bavaria, Germany
- Liver Center Munich, LMU Munich, Munich, Bavaria, Germany
| | - Stefan Munker
- Department of Medicine II, LMU Munich, Munich, Bavaria, Germany
- Liver Center Munich, LMU Munich, Munich, Bavaria, Germany
| |
Collapse
|
8
|
Fragkiadaki P, Renieri E, Kalliantasi K, Kouvidi E, Apalaki E, Vakonaki E, Mamoulakis C, Spandidos DA, Tsatsakis A. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol Med Rep 2022; 25:158. [PMID: 35266017 PMCID: PMC8941523 DOI: 10.3892/mmr.2022.12674] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The main aim of the present systematic review was to summarize the most frequently used telomerase regulators with an impact on aging and cancer that are referred to in in vitro and in vivo studies. For this purpose, a systematic review of the available literature on telomerase regulators referred to in articles from PubMed and Scopus libraries published from 2002 to 2021 and in accordance with PRISMA 2020 criteria, was conducted. Articles were included if they met the following criteria: They referred to telomerase modulators in aging and in cancer and were in vitro and/or in vivo studies, while studies that did not provide sufficient data or studies not written in English were excluded. In the present systematic review, 54 publications were included, of which 29 were full‑text published studies, 11 were full‑text reviews, 10 structure‑based design studies and 4 abstracts are reported in this review. Telomerase regulators were then categorized as synthetic direct telomerase inhibitors, synthetic indirect telomerase inhibitors, synthetic telomerase activators, natural direct telomerase activators, natural telomerase inhibitors and natural indirect telomerase activators, according to their origin and their activity. On the whole, as demonstrated herein, telomerase regulators appear to be promising treatment agents in various age‑related diseases. However, further in vivo and in vitro studies need to be performed in order to clarify the potentiality of telomerase as a therapeutic target.
Collapse
Affiliation(s)
- Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens 15232, Greece
| | - Evita Apalaki
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, 75105 Uppsala, Sweden
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| |
Collapse
|
9
|
Bell AW. Personalized Medicine for Liver Disease: From Molecular Mechanisms to Potential Targeted Therapies. J Pers Med 2022; 12:jpm12050663. [PMID: 35629086 PMCID: PMC9144589 DOI: 10.3390/jpm12050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
This Special Issue, entitled “Personalized Medicine for Liver Disease: From Molecular Mechanisms to Potential Targeted Therapies”, includes 11 publications from colleagues working on various liver diseases including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), hepatocellular carcinoma (HCC), primary biliary cholangitis (PBC), as well as various treatment modalities including pharmacotherapies and liver transplantation [...]
Collapse
Affiliation(s)
- Aaron W Bell
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|