1
|
Shalaby N, Xia Y, Kelly JJ, Sanchez-Pupo R, Martinez F, Fox MS, Thiessen JD, Hicks JW, Scholl TJ, Ronald JA. Imaging CAR-NK cells targeted to HER2 ovarian cancer with human sodium-iodide symporter-based positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51:3176-3190. [PMID: 38722382 PMCID: PMC11368970 DOI: 10.1007/s00259-024-06722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/14/2024] [Indexed: 09/03/2024]
Abstract
Chimeric antigen receptor (CAR) cell therapies utilize CARs to redirect immune cells towards cancer cells expressing specific antigens like human epidermal growth factor receptor 2 (HER2). Despite their potential, CAR T cell therapies exhibit variable response rates and adverse effects in some patients. Non-invasive molecular imaging can aid in predicting patient outcomes by tracking infused cells post-administration. CAR-T cells are typically autologous, increasing manufacturing complexity and costs. An alternative approach involves developing CAR natural killer (CAR-NK) cells as an off-the-shelf allogeneic product. In this study, we engineered HER2-targeted CAR-NK cells co-expressing the positron emission tomography (PET) reporter gene human sodium-iodide symporter (NIS) and assessed their therapeutic efficacy and PET imaging capability in a HER2 ovarian cancer mouse model.NK-92 cells were genetically modified to express a HER2-targeted CAR, the bioluminescence imaging reporter Antares, and NIS. HER2-expressing ovarian cancer cells were engineered to express the bioluminescence reporter Firefly luciferase (Fluc). Co-culture experiments demonstrated significantly enhanced cytotoxicity of CAR-NK cells compared to naive NK cells. In vivo studies involving mice with Fluc-expressing tumors revealed that those treated with CAR-NK cells exhibited reduced tumor burden and prolonged survival compared to controls. Longitudinal bioluminescence imaging demonstrated stable signals from CAR-NK cells over time. PET imaging using the NIS-targeted tracer 18F-tetrafluoroborate ([18F]TFB) showed significantly higher PET signals in mice treated with NIS-expressing CAR-NK cells.Overall, our study showcases the therapeutic potential of HER2-targeted CAR-NK cells in an aggressive ovarian cancer model and underscores the feasibility of using human-derived PET reporter gene imaging to monitor these cells non-invasively in patients.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Ying Xia
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rafael Sanchez-Pupo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Francisco Martinez
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew S Fox
- Lawson Health Research Institute, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Jonathan D Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Justin W Hicks
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Ontario Institute for Cancer Research, London, ON, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
2
|
Indu S, Devi AN, Sahadevan M, Sengottaiyan J, Basu A, K SR, Kumar PG. Expression profiling of stemness markers in testicular germline stem cells from neonatal and adult Swiss albino mice during their transdifferentiation in vitro. Stem Cell Res Ther 2024; 15:93. [PMID: 38561834 PMCID: PMC10985951 DOI: 10.1186/s13287-024-03701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.
Collapse
Affiliation(s)
- Sivankutty Indu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Anandavally N Devi
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Mahitha Sahadevan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Jeeva Sengottaiyan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Asmita Basu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Shabith Raj K
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Pradeep G Kumar
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India.
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
3
|
Achón Buil B, Rentsch NH, Weber RZ, Rickenbach C, Halliday SJ, Hotta A, Tackenberg C, Rust R. Beneath the radar: immune-evasive cell sources for stroke therapy. Trends Mol Med 2024; 30:223-238. [PMID: 38272713 DOI: 10.1016/j.molmed.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Stem cell therapy is an emerging treatment paradigm for stroke patients with remaining neurological deficits. While allogeneic cell transplants overcome the manufacturing constraints of autologous grafts, they can be rejected by the recipient's immune system, which identifies foreign cells through the human leukocyte antigen (HLA) system. The heterogeneity of HLA molecules in the human population would require a very high number of cell lines, which may still be inadequate for patients with rare genetic HLAs. Here, we outline key progress in genetic HLA engineering in pluripotent stem and derived cells to evade the host's immune system, reducing the number of allogeneic cell lines required, and examine safety measures explored in both preclinical studies and upcoming clinical trials.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Stefanie J Halliday
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto, Japan
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Yu F, Liu F, Liang X, Duan L, Li Q, Pan G, Ma C, Liu M, Li M, Wang P, Zhao X. iPSC-Derived Airway Epithelial Cells: Progress, Promise, and Challenges. Stem Cells 2023; 41:1-10. [PMID: 36190736 DOI: 10.1093/stmcls/sxac074] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide an unlimited source of cells that can be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. This review gives a comprehensive overview of recent progress toward the use of iPSCs to generate proximal and distal airway epithelial cells and mix lung organoids. Furthermore, their potential applications and future challenges for the field are discussed, with a focus on the technological hurdles that must be cleared before stem cell therapeutics can be used for clinical treatment.
Collapse
Affiliation(s)
- Fenggang Yu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Fei Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Xiaohua Liang
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Linwei Duan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Qiongqiong Li
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Ge Pan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Chengyao Ma
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Minmin Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Mingyue Li
- Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Peng Wang
- Guangxi Yinfeng Stem Cell Engineering Technology Co., Ltd., Yufeng, Liuzhou, Guangxi Province, People's Republic of China
| | - Xuening Zhao
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
5
|
Nikolouli E, Reichstein J, Hansen G, Lachmann N. In vitro systems to study inborn errors of immunity using human induced pluripotent stem cells. Front Immunol 2022; 13:1024935. [DOI: 10.3389/fimmu.2022.1024935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
In the last two decades, the exponential progress in the field of genetics could reveal the genetic impact on the onset and progression of several diseases affecting the immune system. This knowledge has led to the discovery of more than 400 monogenic germline mutations, also known as “inborn errors of immunity (IEI)”. Given the rarity of various IEI and the clinical diversity as well as the limited available patients’ material, the continuous development of novel cell-based in vitro models to elucidate the cellular and molecular mechanisms involved in the pathogenesis of these diseases is imperative. Focusing on stem cell technologies, this review aims to provide an overview of the current available in vitro models used to study IEI and which could lay the foundation for new therapeutic approaches. We elaborate in particular on the use of induced pluripotent stem cell-based systems and their broad application in studying IEI by establishing also novel infection culture models. The review will critically discuss the current limitations or gaps in the field of stem cell technology as well as the future perspectives from the use of these cell culture systems.
Collapse
|
6
|
Pellegrini S, Zamarian V, Sordi V. Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes. Transpl Int 2022; 35:10575. [PMID: 36090777 PMCID: PMC9448870 DOI: 10.3389/ti.2022.10575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022]
Abstract
Allogeneic islet transplantation allows for the re-establishment of glycemic control with the possibility of insulin independence, but is severely limited by the scarcity of organ donors. However, a new source of insulin-producing cells could enable the widespread use of cell therapy for diabetes treatment. Recent breakthroughs in stem cell biology, particularly pluripotent stem cell (PSC) techniques, have highlighted the therapeutic potential of stem cells in regenerative medicine. An understanding of the stages that regulate β cell development has led to the establishment of protocols for PSC differentiation into β cells, and PSC-derived β cells are appearing in the first pioneering clinical trials. However, the safety of the final product prior to implantation remains crucial. Although PSC differentiate into functional β cells in vitro, not all cells complete differentiation, and a fraction remain undifferentiated and at risk of teratoma formation upon transplantation. A single case of stem cell-derived tumors may set the field back years. Thus, this review discusses four approaches to increase the safety of PSC-derived β cells: reprogramming of somatic cells into induced PSC, selection of pure differentiated pancreatic cells, depletion of contaminant PSC in the final cell product, and control or destruction of tumorigenic cells with engineered suicide genes.
Collapse
|
7
|
Proof-of-Concept of a Novel Cell Separation Technology Using Magnetic Agarose-Based Beads. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The safety of the cells used for Advanced Therapy Medicinal Products is crucial for patients. Reliable methods for the cell purification are very important for the commercialization of those new therapies. With the large production scale envisioned for commercialization, the cell isolation methods need to be efficient, robust, operationally simple and generic while ensuring cell biological functionality and safety. In this study, we used high magnetized magnetic agarose-based beads conjugated with protein A to develop a new method for cell separation. A high separation efficiency of 91% yield and consistent isolation performances were demonstrated using population mixtures of human mesenchymal stem cells and HER2+ SKBR3 cells (80:20, 70:30 and 30:70). Additionally, high robustness against mechanical stress and minimal unspecific binding obtained with the protein A base conjugated magnetic beads were significant advantages in comparison with the same magnetic microparticles where the antibodies were covalently conjugated. This study provided insights on features of large high magnetized microparticles, which is promising for the large-scale application of cell purification.
Collapse
|
8
|
Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem Cell Therapy: From Idea to Clinical Practice. Int J Mol Sci 2022; 23:ijms23052850. [PMID: 35269990 PMCID: PMC8911494 DOI: 10.3390/ijms23052850] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerative medicine is a new and promising mode of therapy for patients who have limited or no other options for the treatment of their illness. Due to their pleotropic therapeutic potential through the inhibition of inflammation or apoptosis, cell recruitment, stimulation of angiogenesis, and differentiation, stem cells present a novel and effective approach to several challenging human diseases. In recent years, encouraging findings in preclinical studies have paved the way for many clinical trials using stem cells for the treatment of various diseases. The translation of these new therapeutic products from the laboratory to the market is conducted under highly defined regulations and directives provided by competent regulatory authorities. This review seeks to familiarize the reader with the process of translation from an idea to clinical practice, in the context of stem cell products. We address some required guidelines for clinical trial approval, including regulations and directives presented by the Food and Drug Administration (FDA) of the United States, as well as those of the European Medicine Agency (EMA). Moreover, we review, summarize, and discuss regenerative medicine clinical trial studies registered on the Clinicaltrials.gov website.
Collapse
|
9
|
Zhong C, Liu M, Pan X, Zhu H. Tumorigenicity Risk of iPSCs in vivo: Nip it in the Bud. PRECISION CLINICAL MEDICINE 2022; 5:pbac004. [PMID: 35692443 PMCID: PMC9026204 DOI: 10.1093/pcmedi/pbac004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022] Open
Abstract
In 2006, Takahashi and Yamanaka first created induced pluripotent stem cells from mouse fibroblasts via the retroviral introduction of genes encoding the transcription factors Oct3/4, Sox2, Klf44, and c-Myc. Since then, the future clinical application of somatic cell reprogramming technology has become an attractive research topic in the field of regenerative medicine. Of note, considerable interest has been placed in circumventing ethical issues linked to embryonic stem cell research. However, tumorigenicity, immunogenicity, and heterogeneity may hamper attempts to deploy this technology therapeutically. This review highlights the progress aimed at reducing induced pluripotent stem cells tumorigenicity risk and how to assess the safety of induced pluripotent stem cells cell therapy products.
Collapse
Affiliation(s)
- Chaoliang Zhong
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Miao Liu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen 518032, Guangdong, China
| | - Haiying Zhu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|