1
|
Issaiy M, Zarei D, Kolahi S, Liebeskind DS. Machine learning and deep learning algorithms in stroke medicine: a systematic review of hemorrhagic transformation prediction models. J Neurol 2024; 272:37. [PMID: 39666168 PMCID: PMC11638292 DOI: 10.1007/s00415-024-12810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a major cause of morbidity and mortality, with hemorrhagic transformation (HT) further worsening outcomes. Traditional scoring systems have limited predictive accuracy for HT in AIS. Recent research has explored machine learning (ML) and deep learning (DL) algorithms for stroke management. This study evaluates and compares the effectiveness of ML and DL algorithms in predicting HT post-AIS, benchmarking them against conventional models. METHODS A systematic search was conducted across PubMed, Embase, Web of Science, Scopus, and IEEE, initially yielding 1421 studies. After screening, 24 studies met the inclusion criteria. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the quality of these studies, and a qualitative synthesis was performed due to heterogeneity in the study design. RESULTS The included studies featured diverse ML and DL algorithms, with Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) being the most common. Gradient boosting (GB) showed superior performance. Median Area Under the Curve (AUC) values were 0.91 for GB, 0.83 for RF, 0.77 for LR, and 0.76 for SVM. Neural networks had a median AUC of 0.81 and convolutional neural networks (CNNs) had a median AUC of 0.91. ML techniques outperformed conventional models, particularly those integrating clinical and imaging data. CONCLUSIONS ML and DL models significantly surpass traditional scoring systems in predicting HT. These advanced models enhance clinical decision-making and improve patient outcomes. Future research should address data expansion, imaging protocol standardization, and model transparency to enhance stroke outcomes further.
Collapse
Affiliation(s)
- Mahbod Issaiy
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Diana Zarei
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Kolahi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - David S Liebeskind
- Comprehensive Stroke Center and Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA.
- Neurovascular Imaging Research Core, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Zhang Y, Xie G, Zhang L, Li J, Tang W, Wang D, Yang L, Li K. Constructing machine learning models based on non-contrast CT radiomics to predict hemorrhagic transformation after stoke: a two-center study. Front Neurol 2024; 15:1413795. [PMID: 39286806 PMCID: PMC11402658 DOI: 10.3389/fneur.2024.1413795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Machine learning (ML) models were constructed according to non-contrast computed tomography (NCCT) images as well as clinical and laboratory information to assess risk stratification for the occurrence of hemorrhagic transformation (HT) in acute ischemic stroke (AIS) patients. Methods A retrospective cohort was constructed with 180 AIS patients who were diagnosed at two centers between January 2019 and October 2023 and were followed for HT outcomes. Patients were analyzed for clinical risk factors for developing HT, infarct texture features were extracted from NCCT images, and the radiomics score (Rad-score) was calculated. Then, five ML models were established and evaluated, and the optimal ML algorithm was used to construct the clinical, radiomics, and clinical-radiomics models. Receiver operating characteristic (ROC) curves were used to compare the performance of the three models in predicting HT. Results Based on the outcomes of the AIS patients, 104 developed HT, and the remaining 76 had no HT. The HT group consisted of 27 hemorrhagic infarction (HI) and 77 parenchymal-hemorrhage (PH). Patients with HT had a greater neutrophil-to-lymphocyte ratio (NLR), baseline National Institutes of Health Stroke Scale (NIHSS) score, infarct volume, and Rad-score and lower Alberta stroke program early CT score (ASPECTS) (all p < 0.01) than patients without HT. The best ML algorithm for building the model was logistic regression. In the training and validation cohorts, the AUC values for the clinical, radiomics, and clinical-radiomics models for predicting HT were 0.829 and 0.876, 0.813 and 0.898, and 0.876 and 0.957, respectively. In subgroup analyses with different treatment modalities, different infarct sizes, and different stroke time windows, the assessment accuracy of the clinical-radiomics model was not statistically meaningful (all p > 0.05), with an overall accuracy of 79.5%. Moreover, this model performed reliably in predicting the PH and HI subcategories, with accuracies of 82.9 and 92.9%, respectively. Conclusion ML models based on clinical and NCCT radiomics characteristics can be used for early risk evaluation of HT development in AIS patients and show great potential for clinical precision in treatment and prognostic assessment.
Collapse
Affiliation(s)
- Yue Zhang
- Chongqing Medical University, Chongqing, China
- Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Gang Xie
- Department of Radiology, Chengdu Third People's Hospital, Chengdu, China
| | - Lingfeng Zhang
- Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing, China
- North Sichuan Medical College, Nanchong, China
| | - Junlin Li
- Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing, China
- North Sichuan Medical College, Nanchong, China
| | - Wuli Tang
- Chongqing Medical University, Chongqing, China
- Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Danni Wang
- Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ling Yang
- Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Kang Li
- Chongqing Medical University, Chongqing, China
- Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Jiang YL, Zhao QS, Li A, Wu ZB, Liu LL, Lin F, Li YF. Advanced Machine Learning Models for Predicting Post-Thrombolysis Hemorrhagic Transformation in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost 2024; 30:10760296241279800. [PMID: 39262220 PMCID: PMC11409297 DOI: 10.1177/10760296241279800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Thrombolytic therapy is essential for acute ischemic stroke (AIS) management but poses a risk of hemorrhagic transformation (HT), necessitating accurate prediction to optimize patient care. Methods: A comprehensive search was conducted across PubMed, Web of Science, Scopus, Embase, and Google Scholar, covering studies from inception until July 10, 2024. Studies were included if they used machine learning (ML) or deep learning algorithms to predict HT in AIS patients treated with thrombolysis. Exclusion criteria included studies involving endovascular treatments and those not evaluating model effectiveness. Data extraction and quality assessment were performed following PRISMA guidelines and using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Risk of Bias Assessment Tool (PROBAST) tools. Results: Out of 1943 identified records, 12 studies were included in the final analysis, encompassing 18 007 AIS patients who received thrombolytic therapy. The ML models demonstrated high predictive performance, with pooled area under the curve (AUC) values ranging from 0.79 to 0.95. Specifically, XGBoost models achieved AUCs of up to 0.953 and Artificial Neural Network (ANN) models reached up to 0.942. Sensitivity and specificity varied significantly, with the highest sensitivity at 0.90 and specificity at 0.99. Significant predictors of HT included age, glucose levels, NIH Stroke Scale (NIHSS) score, systolic and diastolic blood pressure, and radiomic features. Despite these promising results, methodological disparities and limited external validation highlighted the need for standardized reporting and further rigorous testing. Conclusion: ML techniques, especially XGBoost and ANN, show great promise in predicting HT following thrombolysis in AIS patients, enhancing risk stratification and clinical decision-making. Future research should focus on prospective study designs, standardized reporting, and integrating ML assessments into clinical workflows to improve AIS management and patient outcomes.
Collapse
Affiliation(s)
- You-li Jiang
- Department of Neurology, People's Hospital of Longhua, Shenzhen, China
| | - Qing-shi Zhao
- Department of Neurology, People's Hospital of Longhua, Shenzhen, China
| | - Ao Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zong-bi Wu
- Nursing Department, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical School of Guangzhou University of Chinese Medicine), Shenzhen, China
| | - Lin-lin Liu
- Hengyang Medical School, School of Nursing, University of South China, Hengyang, China
| | - Fu Lin
- Department of Neurology, People's Hospital of Longhua, Shenzhen, China
| | - Yan-feng Li
- Department of Neurology, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
4
|
Ru X, Zhao S, Chen W, Wu J, Yu R, Wang D, Dong M, Wu Q, Peng D, Song Y. A weakly supervised deep learning model integrating noncontrasted computed tomography images and clinical factors facilitates haemorrhagic transformation prediction after intravenous thrombolysis in acute ischaemic stroke patients. Biomed Eng Online 2023; 22:129. [PMID: 38115029 PMCID: PMC10731772 DOI: 10.1186/s12938-023-01193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Haemorrhage transformation (HT) is a serious complication of intravenous thrombolysis (IVT) in acute ischaemic stroke (AIS). Accurate and timely prediction of the risk of HT before IVT may change the treatment decision and improve clinical prognosis. We aimed to develop a deep learning method for predicting HT after IVT for AIS using noncontrast computed tomography (NCCT) images. METHODS We retrospectively collected data from 828 AIS patients undergoing recombinant tissue plasminogen activator (rt-PA) treatment within a 4.5-h time window (n = 665) or of undergoing urokinase treatment within a 6-h time window (n = 163) and divided them into the HT group (n = 69) and non-HT group (n = 759). HT was defined based on the criteria of the European Cooperative Acute Stroke Study-II trial. To address the problems of indiscernible features and imbalanced data, a weakly supervised deep learning (WSDL) model for HT prediction was constructed based on multiple instance learning and active learning using admission NCCT images and clinical information in addition to conventional deep learning models. Threefold cross-validation and transfer learning were performed to confirm the robustness of the network. Of note, the predictive value of the commonly used scales in clinics associated with NCCT images (i.e., the HAT and SEDAN score) was also analysed and compared to measure the feasibility of our proposed DL algorithms. RESULTS Compared to the conventional DL and ML models, the WSDL model had the highest AUC of 0.799 (95% CI 0.712-0.883). Significant differences were observed between the WSDL model and five ML models (P < 0.05). The prediction performance of the WSDL model outperforms the HAT and SEDAN scores at the optimal operating point (threshold = 1.5). Further subgroup analysis showed that the WSDL model performed better for symptomatic intracranial haemorrhage (AUC = 0.833, F1 score = 0.909). CONCLUSIONS Our WSDL model based on NCCT images had relatively good performance for predicting HT in AIS and may be suitable for assisting in clinical treatment decision-making.
Collapse
Affiliation(s)
- Xiaoshuang Ru
- Department of Radiology, Central Hospital of Dalian University of Technology, No. 826 Xinan Rd, Shahekou District, Dalian, 116033, Liaoning Province, China
| | - Shilong Zhao
- Department of Radiology, Affliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Rd, Zhongshan District, Dalian, 116001, Liaoning Province, China
| | - Weidao Chen
- InferVision Medical Technology Company Ltd, 25F, Building E, Yuanyang International Center, Chaoyang District, Beijing, 100025, China
| | - Jiangfen Wu
- InferVision Medical Technology Company Ltd, 25F, Building E, Yuanyang International Center, Chaoyang District, Beijing, 100025, China
| | - Ruize Yu
- InferVision Medical Technology Company Ltd, 25F, Building E, Yuanyang International Center, Chaoyang District, Beijing, 100025, China
| | - Dawei Wang
- InferVision Medical Technology Company Ltd, 25F, Building E, Yuanyang International Center, Chaoyang District, Beijing, 100025, China
| | - Mengxing Dong
- InferVision Medical Technology Company Ltd, 25F, Building E, Yuanyang International Center, Chaoyang District, Beijing, 100025, China
| | - Qiong Wu
- Department of Neurology, Central Hospital of Dalian University of Technology, No. 826 Xinan Rd, Shahekou District, Dalian, 116033, Liaoning Province, China
| | - Daoyong Peng
- Department of Neurology, Central Hospital of Dalian University of Technology, No. 826 Xinan Rd, Shahekou District, Dalian, 116033, Liaoning Province, China
| | - Yang Song
- Department of Radiology, Central Hospital of Dalian University of Technology, No. 826 Xinan Rd, Shahekou District, Dalian, 116033, Liaoning Province, China.
| |
Collapse
|
5
|
Wen R, Wang M, Bian W, Zhu H, Xiao Y, He Q, Wang Y, Liu X, Shi Y, Hong Z, Xu B. Machine learning-based prediction of symptomatic intracerebral hemorrhage after intravenous thrombolysis for stroke: a large multicenter study. Front Neurol 2023; 14:1247492. [PMID: 37928151 PMCID: PMC10624225 DOI: 10.3389/fneur.2023.1247492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Background This study aimed to compare the performance of different machine learning models in predicting symptomatic intracranial hemorrhage (sICH) after thrombolysis treatment for ischemic stroke. Methods This multicenter study utilized the Shenyang Stroke Emergency Map database, comprising 8,924 acute ischemic stroke patients from 29 comprehensive hospitals who underwent thrombolysis between January 2019 and December 2021. An independent testing cohort was further established, including 1,921 patients from the First People's Hospital of Shenyang. The structured dataset encompassed 15 variables, including clinical and therapeutic metrics. The primary outcome was the sICH occurrence post-thrombolysis. Models were developed using an 80/20 split for training and internal validation. Performance was assessed using machine learning classifiers, including logistic regression with lasso regularization, support vector machine (SVM), random forest, gradient-boosted decision tree (GBDT), and multilayer perceptron (MLP). The model boasting the highest area under the curve (AUC) was specifically employed to highlight feature importance. Results Baseline characteristics were compared between the training cohort (n = 6,369) and the external validation cohort (n = 1,921), with the sICH incidence being slightly higher in the training cohort (1.6%) compared to the validation cohort (1.1%). Among the evaluated models, the logistic regression with lasso regularization achieved the highest AUC of 0.87 (95% confidence interval [CI]: 0.79-0.95; p < 0.001), followed by the MLP model with an AUC of 0.766 (95% CI: 0.637-0.894; p = 0.04). The reference model and SVM showed AUCs of 0.575 and 0.582, respectively, while the random forest and GBDT models performed less optimally with AUCs of 0.536 and 0.436, respectively. Decision curve analysis revealed net benefits primarily for the SVM and MLP models. Feature importance from the logistic regression model emphasized anticoagulation therapy as the most significant negative predictor (coefficient: -2.0833) and recombinant tissue plasminogen activator as the principal positive predictor (coefficient: 0.5082). Conclusion After a comprehensive evaluation, the MLP model is recommended due to its superior ability to predict the risk of symptomatic hemorrhage post-thrombolysis in ischemic stroke patients. Based on decision curve analysis, the MLP-based model was chosen and demonstrated enhanced discriminative ability compared to the reference. This model serves as a valuable tool for clinicians, aiding in treatment planning and ensuring more precise forecasting of patient outcomes.
Collapse
Affiliation(s)
- Rui Wen
- Shenyang Tenth People’s Hospital, Shenyang, China
| | - Miaoran Wang
- Affiliated Central Hospital of Shenyang Medical College, Shenyang Medical College, Shenyang, China
| | - Wei Bian
- Shenyang First People’s Hospital, Shenyang Medical College, Shenyang, China
| | - Haoyue Zhu
- Shenyang First People’s Hospital, Shenyang Medical College, Shenyang, China
| | - Ying Xiao
- Shenyang First People’s Hospital, Shenyang Medical College, Shenyang, China
| | - Qian He
- Shenyang Tenth People’s Hospital, Shenyang, China
| | - Yu Wang
- Shenyang Tenth People’s Hospital, Shenyang, China
| | - Xiaoqing Liu
- Shenyang Tenth People’s Hospital, Shenyang, China
| | - Yangdi Shi
- Shenyang Tenth People’s Hospital, Shenyang, China
| | - Zhe Hong
- Shenyang First People’s Hospital, Shenyang Medical College, Shenyang, China
| | - Bing Xu
- Shenyang Tenth People’s Hospital, Shenyang, China
| |
Collapse
|
6
|
Gilotra K, Swarna S, Mani R, Basem J, Dashti R. Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease. Front Hum Neurosci 2023; 17:1254417. [PMID: 37746051 PMCID: PMC10516608 DOI: 10.3389/fnhum.2023.1254417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cerebrovascular diseases are known to cause significant morbidity and mortality to the general population. In patients with cerebrovascular disease, prompt clinical evaluation and radiographic interpretation are both essential in optimizing clinical management and in triaging patients for critical and potentially life-saving neurosurgical interventions. With recent advancements in the domains of artificial intelligence (AI) and machine learning (ML), many AI and ML algorithms have been developed to further optimize the diagnosis and subsequent management of cerebrovascular disease. Despite such advances, further studies are needed to substantively evaluate both the diagnostic accuracy and feasibility of these techniques for their application in clinical practice. This review aims to analyze the current use of AI and MI algorithms in the diagnosis of, and clinical decision making for cerebrovascular disease, and to discuss both the feasibility and future applications of utilizing such algorithms. Methods We review the use of AI and ML algorithms to assist clinicians in the diagnosis and management of ischemic stroke, hemorrhagic stroke, intracranial aneurysms, and arteriovenous malformations (AVMs). After identifying the most widely used algorithms, we provide a detailed analysis of the accuracy and effectiveness of these algorithms in practice. Results The incorporation of AI and ML algorithms for cerebrovascular patients has demonstrated improvements in time to detection of intracranial pathologies such as intracerebral hemorrhage (ICH) and infarcts. For ischemic and hemorrhagic strokes, commercial AI software platforms such as RapidAI and Viz.AI have bene implemented into routine clinical practice at many stroke centers to expedite the detection of infarcts and ICH, respectively. Such algorithms and neural networks have also been analyzed for use in prognostication for such cerebrovascular pathologies. These include predicting outcomes for ischemic stroke patients, hematoma expansion, risk of aneurysm rupture, bleeding of AVMs, and in predicting outcomes following interventions such as risk of occlusion for various endovascular devices. Preliminary analyses have yielded promising sensitivities when AI and ML are used in concert with imaging modalities and a multidisciplinary team of health care providers. Conclusion The implementation of AI and ML algorithms to supplement clinical practice has conferred a high degree of accuracy, efficiency, and expedited detection in the clinical and radiographic evaluation and management of ischemic and hemorrhagic strokes, AVMs, and aneurysms. Such algorithms have been explored for further purposes of prognostication for these conditions, with promising preliminary results. Further studies should evaluate the longitudinal implementation of such techniques into hospital networks and residency programs to supplement clinical practice, and the extent to which these techniques improve patient care and clinical outcomes in the long-term.
Collapse
Affiliation(s)
| | | | | | | | - Reza Dashti
- Dashti Lab, Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, United States
| |
Collapse
|
7
|
Liu Y, Luo Y, Naidech AM. Big Data in Stroke: How to Use Big Data to Make the Next Management Decision. Neurotherapeutics 2023; 20:744-757. [PMID: 36899137 PMCID: PMC10275829 DOI: 10.1007/s13311-023-01358-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
The last decade has seen significant advances in the accumulation of medical data, the computational techniques to analyze that data, and corresponding improvements in management. Interventions such as thrombolytics and mechanical thrombectomy improve patient outcomes after stroke in selected patients; however, significant gaps remain in our ability to select patients, predict complications, and understand outcomes. Big data and the computational methods needed to analyze it can address these gaps. For example, automated analysis of neuroimaging to estimate the volume of brain tissue that is ischemic and salvageable can help triage patients for acute interventions. Data-intensive computational techniques can perform complex risk calculations that are too cumbersome to be completed by humans, resulting in more accurate and timely prediction of which patients require increased vigilance for adverse events such as treatment complications. To handle the accumulation of complex medical data, a variety of advanced computational techniques referred to as machine learning and artificial intelligence now routinely complement traditional statistical inference. In this narrative review, we explore data-intensive techniques in stroke research, how it has informed the management of stroke patients, and how current work could shape clinical practice in the future.
Collapse
Affiliation(s)
- Yuzhe Liu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Yuan Luo
- Section of Health and Biomedical Informatics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew M Naidech
- Section of Neurocritical Care, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation. J Pers Med 2022; 12:jpm12122052. [PMID: 36556272 PMCID: PMC9782609 DOI: 10.3390/jpm12122052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hemorrhagic complication (HC) is the most severe complication of intravenous thrombolysis (IVT) in patients with acute ischemic stroke (AIS). This study aimed to build a machine learning (ML) prediction model and an application system for a personalized analysis of the risk of HC in patients undergoing IVT therapy. We included patients from Chongqing, Hainan and other centers, including Computed Tomography (CT) images, demographics, and other data, before the occurrence of HC. After feature engineering, a better feature subset was obtained, which was used to build a machine learning (ML) prediction model (Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB)), and then evaluated with relevant indicators. Finally, a prediction model with better performance was obtained. Based on this, an application system was built using the Flask framework. A total of 517 patients were included, of which 332 were in the training cohort, 83 were in the internal validation cohort, and 102 were in the external validation cohort. After evaluation, the performance of the XGB model is better, with an AUC of 0.9454 and ACC of 0.8554 on the internal validation cohort, and 0.9142 and ACC of 0.8431 on the external validation cohort. A total of 18 features were used to construct the model, including hemoglobin and fasting blood sugar. Furthermore, the validity of the model is demonstrated through decision curves. Subsequently, a system prototype is developed to verify the test prediction effect. The clinical decision support system (CDSS) embedded with the XGB model based on clinical data and image features can better carry out personalized analysis of the risk of HC in intravenous injection patients.
Collapse
|
9
|
Assessment of CT for the categorization of hemorrhagic stroke (HS) and cerebral amyloid angiopathy hemorrhage (CAAH): A review. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|