1
|
Abughazaleh N, Boldt K, Rios JL, Mattiello SM, Collins KH, Seerattan RA, Herzog W. Aerobic and Resistance Training Attenuate Differently Knee Joint Damage Caused by a High-Fat-High-Sucrose Diet in a Rat Model. Cartilage 2024; 15:453-460. [PMID: 37655800 PMCID: PMC11526155 DOI: 10.1177/19476035231193090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE Obesity and associated low-level local systemic inflammation have been linked to an increased rate of developing knee osteoarthritis (OA). Aerobic exercise has been shown to protect the knee from obesity-induced joint damage. The aims of this study were to determine (1) if resistance training provides beneficial metabolic effects similar to those previously observed with aerobic training in rats consuming a high-fat/high-sucrose (HFS) diet and (2) if these metabolic effects mitigate knee OA in a diet-induced obesity model in rats. DESIGN Twelve-week-old Sprague-Dawley rats were randomized into 4 groups: (1) a group fed an HFS diet subjected to aerobic exercise (HFS+Aer), (2) a group fed an HFS diet subjected to resistance exercise (HFS+Res), (3) a group fed an HFS diet with no exercise (HFS+Sed), and (4) a chow-fed sedentary control group (Chow+Sed). HFS+Sed animals were heavier and had greater body fat, higher levels of triglycerides and total cholesterol, and more joint damage than Chow+Sed animals. RESULTS The HFS+Res group had higher body mass and body fat than Chow+Sed animals and higher OA scores than animals from the HFS+Aer group. Severe bone lesions were observed in the HFS+Sed and Chow+Sed animals at age 24 weeks, but not in the HFS+Res and HFS+Aer group animals. CONCLOSION In summary, aerobic training provided better protection against knee joint OA than resistance training in this rat model of HFS-diet-induced obesity. Exposing rats to exercise, either aerobic or resistance training, had a protective effect against the severe bone lesions observed in the nonexercised rats.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Kevin Boldt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline Lourdes Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Kelsey H. Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ruth-Anne Seerattan
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Kazeminasab F, Bahrami Kerchi A, Behzadnejad N, Belyani S, Rosenkranz SK, Bagheri R, Dutheil F. The Effects of Exercise Interventions on Ectopic and Subcutaneous Fat in Patients with Type 2 Diabetes Mellitus: A Systematic Review, Meta-Analysis, and Meta-Regression. J Clin Med 2024; 13:5005. [PMID: 39274218 PMCID: PMC11396734 DOI: 10.3390/jcm13175005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: The aim of the present study was to determine the effects of exercise training on ectopic and subcutaneous fat in patients with type 2 diabetes mellitus (T2DM). Methods: Web of Science, PubMed, and Scopus were searched for original articles published through November 2023 that included exercise versus control interventions on body mass (BM), liver fat percentage, visceral fat area (VFA), subcutaneous fat area (SFA), and intramuscular fat volume or mass (IMF) in patients with T2DM. Weighted mean differences (WMDs) for liver fat and BM, standardized mean differences (SMDs) for VFA, SFA, and IMF, and 95% confidence intervals (95% CIs) were determined using random-effects models. Results: Thirty-six studies comprising 2110 patients with T2DM were included in the present meta-analysis. Exercise training effectively reduced BM [WMD = -2.502 kg, p = 0.001], liver fat% [WMD = -1.559%, p = 0.030], VFA [SMD = -0.510, p = 0.001], and SFA [SMD = -0.413, p = 0.001] in comparison to the control. The IMF [SMD = 0.222, p = 0.118] remained unchanged compared to the controls. Subgroup analyses showed that the type of exercise, duration, and body mass index (BMI) of participants were sources of heterogeneity. Conclusions: The current meta-analysis provides strong evidence that exercise training, particularly aerobic and combined (aerobic and resistance) exercise programs, is effective for reducing BM, VFA, and SFA in patients with T2DM. However, aerobic exercise was more effective for reducing liver fat than combined exercise. The beneficial effects of exercise on VFA and SFA reduction, but not liver fat, are associated with weight loss. These findings highlight the importance of including consistent exercise as a key management component for T2DM and associated ectopic fat deposition, with potential long-term benefits for metabolic health.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan 87317-53153, Iran
| | - Ali Bahrami Kerchi
- Department of Exercise Physiology, Faculty of Sports Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan P.O. Box 81551-39998, Iran
| | - Nasim Behzadnejad
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan P.O. Box 81746-73441, Iran
| | - Saba Belyani
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Reza Bagheri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan P.O. Box 81746-73441, Iran
| | - Fred Dutheil
- University Hospital of Clermont-Ferrand, Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, Occupational and Environmental Medicine, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Drozdovska S, Zanou N, Lavier J, Mazzolai L, Millet GP, Pellegrin M. Moderate Effects of Hypoxic Training at Low and Supramaximal Intensities on Skeletal Muscle Metabolic Gene Expression in Mice. Metabolites 2023; 13:1103. [PMID: 37887428 PMCID: PMC10609052 DOI: 10.3390/metabo13101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The muscle molecular adaptations to different exercise intensities in combination with hypoxia are not well understood. This study investigated the effect of low- and supramaximal-intensity hypoxic training on muscle metabolic gene expression in mice. C57BL/6 mice were divided into two groups: sedentary and training. Training consisted of 4 weeks at low or supramaximal intensity, either in normoxia or hypoxia (FiO2 = 0.13). The expression levels of genes involved in the hypoxia signaling pathway (Hif1a and Vegfa), the metabolism of glucose (Gys1, Glut4, Hk2, Pfk, and Pkm1), lactate (Ldha, Mct1, Mct4, Pdh, and Pdk4) and lipid (Cd36, Fabp3, Ucp2, Hsl, and Mcad), and mitochondrial energy metabolism and biogenesis (mtNd1, mtNd6, CytC, CytB, Pgc1a, Pgc1β, Nrf1, Tfam, and Cs) were determined in the gastrocnemius muscle. No physical performance improvement was observed between groups. In normoxia, supramaximal intensity training caused upregulation of major genes involved in the transport of glucose and lactate, fatty acid oxidation, and mitochondrial biogenesis, while low intensity training had a minor effect. The exposure to hypoxia changed the expression of some genes in the sedentary mice but had a moderate effect in trained mice compared to respective normoxic mice. In hypoxic groups, low-intensity training increased the mRNA levels of Mcad and Cs, while supramaximal intensity training decreased the mRNA levels of Mct1 and Mct4. The results indicate that hypoxic training, regardless of exercise intensity, has a moderate effect on muscle metabolic gene expression in healthy mice.
Collapse
Affiliation(s)
- Svitlana Drozdovska
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Biomedical Disciplines Department, Health, Physical Education and Tourism Faculty, National University of Ukraine on Physical Education and Sport, 03150 Kyiv, Ukraine
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Jessica Lavier
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Lucia Mazzolai
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
| | - Maxime Pellegrin
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| |
Collapse
|
4
|
He M, Hu S, Wang J, Wang J, Găman MA, Hariri Z, Tian Y. Effect of resistance training on lipid profile in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol 2023; 288:18-28. [PMID: 37421743 DOI: 10.1016/j.ejogrb.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVE Physical exercise decreases cardiovascular risk and can alter the lipid profile in postmenopausal women. Although it is believed that resistance training can potentially decrease serum lipid levels in postmenopausal females, the evidence remains inconclusive. The aim of this systematic review and meta-analysis of randomized controlled trials (RCTs) was to clarify the impact of resistance training on the lipid profile in postmenopausal women. METHODS Web of Science, Scopus, PubMed/Medline and Embase were searched. RCTs that evaluated the effect of resistance training on total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels were included in this review. Effect size was estimated using the random effects model. Subgroup analyses based on age, duration of intervention, pre-enrolment serum lipid levels and body mass index were performed. RESULTS Data pooled from 19 RCTs revealed that resistance training can reduce TC [weighted mean difference (WMD) -11.47 mg/dl; p = 0.002], LDL-C (WMD -8.48 mg/dl; p = 0.01) and TG (WMD -6.61 mg/dl; p = 0.043) levels. TC levels decreased particularly in subjects aged < 60 years (WMD -10.77 mg/dl; p = 0.003), in RCTs lasting < 16 weeks (WMD -15.70 mg/dl; p = 0.048), and in subjects with hypercholesterolaemia (WMD -12.36 mg/dl; p = 0.001) or obesity (WMD -19.35 mg/dl; p = 0.006) before RCT enrolment. There was a significant decrease in LDL-C (WMD -14.38 mg/dl; p = 0.002) levels in patients with LDL-C ≥ 130 mg/dl before trial enrolment. Resistance training reduced HDL-C (WMD -2.97 mg/dl; p = 0.01) levels particularly in subjects with obesity. TG (WMD -10.71 mg/dl; p = 0.01) levels decreased particularly when the intervention lasted < 16 weeks. CONCLUSION Resistance training can decrease TC, LDL-C and TG levels in postmenopausal females. The impact of resistance training on HDL-C levels was small, and was only observed in individuals with obesity. The effect of resistance training on the lipid profile was more notable in short-term interventions and in postmenopausal women with dyslipidaemia or obesity before trial enrolment.
Collapse
Affiliation(s)
- Min He
- Departments of Ultrasound, West China Second University Hospital, Sichuan University/Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, China
| | - Sha Hu
- Departments of Ultrasound, West China Second University Hospital, Sichuan University/Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, China
| | - Jin Wang
- Departments of Ultrasound, West China Second University Hospital, Sichuan University/Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, China
| | - Jing Wang
- Departments of Ultrasound, West China Second University Hospital, Sichuan University/Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania; Department of Haematology, Centre of Haematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Zahra Hariri
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yu Tian
- Departments of Ultrasound, West China Second University Hospital, Sichuan University/Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, China.
| |
Collapse
|
5
|
Lakshminarayana L, Veeraraghavan V, Gouthami K, Srihari R, Chowdadenahalli Nagaraja P. Effect of Abutilon indicum (L) Extract on Adipogenesis, Lipolysis and Cholesterol Esterase in 3T3-L1 Adipocyte Cell Lines. Indian J Clin Biochem 2023; 38:22-32. [PMID: 36684487 PMCID: PMC9852410 DOI: 10.1007/s12291-022-01022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 01/25/2023]
Abstract
Abutilon indicum (L) is an Indian traditional plant used for the treatment of diabetes and heart diseases. The present study is to evaluate the functional of A. indicum leaf extract as insulin like character to inhibit lipolysis and stimulates Adipogenesis activity. The ability of the A. indicum leaf extract in anti-obesity effect of Adipogenesis, lipolysis and cholesterol esterase functions can be predicted by using 3T3-L1 adipocyte cell lines. Substances were isolated from A. indicum leaves and the double filtered crude sample were used for Adipogenesis, lipolysis and cholesterol esterase activity using 3T3-L1 adipocytes at different concentrations. We used differential media-I, differential media-II and maintenance media (MM1) at concentrations of 20, 40, 60, 80, 100, 200 and 400 µg/mL respectively. In addition to the extract, there is a significance increase in glycerol release (p < 0.001) compared with crude and reference compounds. Cholesterol esterase activity predicts the IC50 = 27.11 µg/mL of orlistat positive control compare with IC50 = 8.158 µg/mL of crude extract. Based on the observation, A. indicum leaf extract can promotes lipolysis and differentiated adipocytes. It is potentially used as adjuvant in the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Lavanya Lakshminarayana
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - V. Veeraraghavan
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - Kuruvalli Gouthami
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - Renuka Srihari
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bangalore, 560012 India
| | | |
Collapse
|
6
|
Wang S, Zhou H, Zhao C, He H. Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis. Front Immunol 2022; 13:921085. [PMID: 35812437 PMCID: PMC9260601 DOI: 10.3389/fimmu.2022.921085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
ObjectiveThis study aimed to compare and rank the effectiveness of aerobic exercise (AE), resistance training (RT), combined aerobic and resistance training (CT), and high-intensity interval training (HIIT) on body composition and inflammatory cytokine levels in overweight and obese individuals by using network meta-analysis (NMA).MethodsWe searched the PubMed, Cochrane, Embase, Web of Science, and EBSCO databases to identify randomized controlled trials investigating the effects of exercise training on inflammatory cytokines in overweight and obese patients. The retrieval period was from inception to November 2021. Two reviewers independently screened the retrieved articles, extracted the pertinent data, and assessed the risk of bias of the included studies; then, they used Stata 16.0 and Review Manager 5.3 to perform an NMA.ResultsA total of 38 studies involving 1317 patients were included in this study. The results of the NMA indicated that AE had the greatest effect on weight loss (SUCRA=78.3; SMD=−0.51, 95% CI: −0.70, −0.33); CT had the greatest effect on reducing body mass index (SUCRA=70.7; SMD=−0.46, 95% CI: −0.81, −0.10), waist circumference (SUCRA=93.4; SMD=−1.86, 95% CI: −2.80, −0.93), percentage body fat (SUCRA=79.6; SMD=−1.38, 95% CI: −2.29, −0.48), interleukin-6 level (SUCRA=86.4; SMD=−1.98, 95% CI: −3.87, −0.09), and tumor necrosis factor-α level (SUCRA=79.4; SMD=−2.08, 95% CI: −3.75, −0.42); AE (SMD=0.51, 95% CI: −1.68, 2.69), RT (SMD=0.15, 95% CI: −3.01, 3.32), CT (SMD=1.78, 95% CI: −1.35, 4.92), and HIIT (SMD=2.29, 95% CI: −1.27, 5.86) did not significantly increase the adiponectin level.ConclusionThe current results suggest that CT is the best exercise modality for improving body composition and inflammatory status in overweight and obese individuals. More rigorous randomized control trials are needed for further validation.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42022303165.
Collapse
Affiliation(s)
- Shengya Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Huayi Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Changtao Zhao
- Department of Physical Health and Arts Education, Ministry of Education, Beijing, China
| | - Hui He
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Hui He,
| |
Collapse
|
7
|
Effects of Leisure-Time Physical Activity on Cognitive Reserve Biomarkers and Leisure Motivation in the Pre-Diabetes Elderly. Healthcare (Basel) 2022; 10:healthcare10040737. [PMID: 35455914 PMCID: PMC9032024 DOI: 10.3390/healthcare10040737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to investigate the change in cognitive reserve biomarkers of the pre-diabetic individual according to the types of leisure-time physical activity (aerobic or resistance physical activity). The research subjects (n = 184) who participated in the survey were pre-diabetic and diabetic patients who were visiting university hospitals and welfare centers. The intervention subjects (n = 36) who were elderly females with pre-diabetes volunteered to participate in the study by performing regular physical exercise (aerobic or resistance exercise). The study participants were 65 years of age or older with pre-diabetes defined by a glycated hemoglobin (HbA1c) level of (5.7−6.4)%. All research subjects performed motivation and stress questionnaire survey. All intervention subjects participated in leisure-time physical activity (LTPA) for 12 weeks. Body composition, HbA1c, and cognitive reserve biomarkers were measured at baseline, and at 6 and 12 weeks. LTPA motivation confirmed that the LTPA participants had a high level of motivation. Stress confirmed that the stress level of LTPA participants was low. Two-way within-factor ANOVA revealed significant group × time interaction for weight (p < 0.05), BMI (p < 0.01), % fat (p < 0.001), SBP (p < 0.05), HbA1c (p < 0.001), BDNF (p < 0.001), and Beta-Amyloid 1−42 (p < 0.001). In both physical activity groups, HbA1c (p < 0.001), NGF (p < 0.05), BDNF (p < 0.05), and Cathepsin B (p < 0.05) improved significantly at 12 weeks, compared to baseline and 6 weeks. In the resistance physical activity group, Beta-Amyloid 1−42 (p < 0.01) and Homocysteine (p < 0.05) significantly decreased at 12 weeks, compared to baseline and at 6 weeks. The LTPA showed high levels of integrated and identified regulation among leisure motive types, and the level of stress was found to be low. The LTPA is effective in reducing the HbA1c levels of the pre-diabetes elderly. In addition, the pre-diabetes elderly were found to have increased NGF, BDNF, and cathepsin B, and decreased Beta-Amyloid 1−42 and homocysteine. Regular leisure-time physical activity has a positive effect on cognitive reserve biomarkers through improving glycemic control by reducing weight and % fat in the pre-diabetes elderly.
Collapse
|