1
|
Santoro M, Zybin V, Coada CA, Mantovani G, Paolani G, Di Stanislao M, Modolon C, Di Costanzo S, Lebovici A, Ravegnini G, De Leo A, Tesei M, Pasquini P, Lovato L, Morganti AG, Pantaleo MA, De Iaco P, Strigari L, Perrone AM. Machine Learning Applied to Pre-Operative Computed-Tomography-Based Radiomic Features Can Accurately Differentiate Uterine Leiomyoma from Leiomyosarcoma: A Pilot Study. Cancers (Basel) 2024; 16:1570. [PMID: 38672651 PMCID: PMC11048510 DOI: 10.3390/cancers16081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The accurate discrimination of uterine leiomyosarcomas and leiomyomas in a pre-operative setting remains a current challenge. To date, the diagnosis is made by a pathologist on the excised tumor. The aim of this study was to develop a machine learning algorithm using radiomic data extracted from contrast-enhanced computed tomography (CECT) images that could accurately distinguish leiomyosarcomas from leiomyomas. METHODS Pre-operative CECT images from patients submitted to surgery with a histological diagnosis of leiomyoma or leiomyosarcoma were used for the region of interest identification and radiomic feature extraction. Feature extraction was conducted using the PyRadiomics library, and three feature selection methods combined with the general linear model (GLM), random forest (RF), and support vector machine (SVM) classifiers were built, trained, and tested for the binary classification task (malignant vs. benign). In parallel, radiologists assessed the diagnosis with or without clinical data. RESULTS A total of 30 patients with leiomyosarcoma (mean age 59 years) and 35 patients with leiomyoma (mean age 48 years) were included in the study, comprising 30 and 51 lesions, respectively. Out of nine machine learning models, the three feature selection methods combined with the GLM and RF classifiers showed good performances, with predicted area under the curve (AUC), sensitivity, and specificity ranging from 0.78 to 0.97, from 0.78 to 1.00, and from 0.67 to 0.93, respectively, when compared to the results obtained from experienced radiologists when blinded to the clinical profile (AUC = 0.73 95%CI = 0.62-0.84), as well as when the clinical data were consulted (AUC = 0.75 95%CI = 0.65-0.85). CONCLUSIONS CECT images integrated with radiomics have great potential in differentiating uterine leiomyomas from leiomyosarcomas. Such a tool can be used to mitigate the risks of eventual surgical spread in the case of leiomyosarcoma and allow for safer fertility-sparing treatment in patients with benign uterine lesions.
Collapse
Affiliation(s)
- Miriam Santoro
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.S.); (G.P.); (L.S.)
| | - Vladislav Zybin
- Pediatric and Adult CardioThoracic and Vascular, Oncohematologic and Emergency Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (V.Z.); (C.M.); (L.L.)
| | | | - Giulia Mantovani
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (M.D.S.); (S.D.C.); (M.T.); (P.P.)
| | - Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.S.); (G.P.); (L.S.)
| | - Marco Di Stanislao
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (M.D.S.); (S.D.C.); (M.T.); (P.P.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.D.L.); (A.G.M.); (M.A.P.)
| | - Cecilia Modolon
- Pediatric and Adult CardioThoracic and Vascular, Oncohematologic and Emergency Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (V.Z.); (C.M.); (L.L.)
| | - Stella Di Costanzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (M.D.S.); (S.D.C.); (M.T.); (P.P.)
| | - Andrei Lebovici
- Radiology and Imaging Department, County Emergency Hospital, 400347 Cluj-Napoca, Romania;
- Surgical Specialties Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Antonio De Leo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.D.L.); (A.G.M.); (M.A.P.)
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Tesei
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (M.D.S.); (S.D.C.); (M.T.); (P.P.)
| | - Pietro Pasquini
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (M.D.S.); (S.D.C.); (M.T.); (P.P.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.D.L.); (A.G.M.); (M.A.P.)
| | - Luigi Lovato
- Pediatric and Adult CardioThoracic and Vascular, Oncohematologic and Emergency Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (V.Z.); (C.M.); (L.L.)
| | - Alessio Giuseppe Morganti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.D.L.); (A.G.M.); (M.A.P.)
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.D.L.); (A.G.M.); (M.A.P.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (M.D.S.); (S.D.C.); (M.T.); (P.P.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.D.L.); (A.G.M.); (M.A.P.)
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.S.); (G.P.); (L.S.)
| | - Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (M.D.S.); (S.D.C.); (M.T.); (P.P.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.D.L.); (A.G.M.); (M.A.P.)
| |
Collapse
|
2
|
Raffone A, Raimondo D, Neola D, Travaglino A, Giorgi M, Lazzeri L, De Laurentiis F, Carravetta C, Zupi E, Seracchioli R, Casadio P, Guida M. Diagnostic accuracy of MRI in the differential diagnosis between uterine leiomyomas and sarcomas: A systematic review and meta-analysis. Int J Gynaecol Obstet 2024; 165:22-33. [PMID: 37732472 DOI: 10.1002/ijgo.15136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Differential diagnosis between uterine leiomyomas and sarcomas is challenging. Magnetic resonance imaging (MRI) represents the second-line diagnostic method after ultrasound for the assessment of uterine masses. OBJECTIVES To assess the accuracy of MRI in the differential diagnosis between uterine leiomyomas and sarcomas. SEARCH STRATEGY A systematic review and meta-analysis was performed searching five electronic databases from their inception to June 2023. SELECTION CRITERIA All peer-reviewed observational or randomized clinical trials that reported an unbiased postoperative histologic diagnosis of uterine leiomyoma or uterine sarcoma, which also comprehended a preoperative MRI evaluation of the uterine mass. DATA COLLECTION AND ANALYSIS Sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio, and area under the curve on summary receiver operating characteristic of MRI in differentiating uterine leiomyomas and sarcomas were calculated as individual and pooled estimates, with 95% confidence intervals (CI). RESULTS Eight studies with 2495 women (2253 with uterine leiomyomas and 179 with uterine sarcomas), were included. MRI showed pooled sensitivity of 0.90 (95% CI 0.84-0.94), specificity of 0.96 (95% CI 0.96-0.97), positive likelihood ratio of 13.55 (95% CI 6.20-29.61), negative likelihood ratio of 0.08 (95% CI 0.02-0.32), diagnostic odds ratio of 175.13 (95% CI 46.53-659.09), and area under the curve of 0.9759. CONCLUSIONS MRI has a high diagnostic accuracy in the differential diagnosis between uterine leiomyomas and sarcomas.
Collapse
Affiliation(s)
- Antonio Raffone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Gynecology and Human Reproduction Physiopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Diego Raimondo
- Division of Gynecology and Human Reproduction Physiopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniele Neola
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonio Travaglino
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
- Gynecopathology and Breast Pathology Unit, Department of Woman's Health Science, Agostino Gemelli University Polyclinic, Rome, Italy
| | - Matteo Giorgi
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy
| | - Lucia Lazzeri
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy
| | | | - Carlo Carravetta
- Obstetrics and Gynecology Unit, Salerno ASL, "Villa Malta" Hospital, Sarno, Italy
| | - Errico Zupi
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy
| | - Renato Seracchioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Gynecology and Human Reproduction Physiopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Casadio
- Division of Gynecology and Human Reproduction Physiopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maurizio Guida
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Borella F, Mancarella M, Preti M, Mariani L, Stura I, Sciarrone A, Bertschy G, Leuzzi B, Piovano E, Valabrega G, Turinetto M, Pino I, Castellano I, Bertero L, Cassoni P, Cosma S, Franchi D, Benedetto C. Uterine smooth muscle tumors: a multicenter, retrospective, comparative study of clinical and ultrasound features. Int J Gynecol Cancer 2024; 34:244-250. [PMID: 38054268 DOI: 10.1136/ijgc-2023-004880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVE To evaluate a wide range of clinical and ultrasound characteristics of different uterine smooth muscle tumors to identify features capable of discriminating between these types. METHODS This was a retrospective, multicenter study that included 285 patients diagnosed with uterine smooth muscle tumors (50 leiomyosarcomas, 35 smooth muscle tumors of uncertain malignant potential, and 200 leiomyomas). The patients were divided into three groups based on the histological type of their tumors, and the groups were compared according to the variables collected. RESULTS Leiomyosarcomas were more common in older and post-menopausal women. Compared with leiomyomas, smooth muscle tumors of uncertain malignant potential and leiomyosarcomas had similar ultrasound features such as absence of normal myometrium, multilocular appearance, hyper-echogenicity in case of uniform echogenicity, absence of posterior shadows, echogenic areas, and hyperechoic rim. Leiomyosarcomas were larger, had more cystic areas, and were associated with a higher prevalence of pelvic free fluid. Smooth muscle tumors of uncertain malignant potential were characterized by a higher frequency of International Federation of Gynecology and Obstetrics (FIGO) type 6-7, the absence of internal shadows, and, in the case of cystic area, the presence of a regular internal wall. Tumor outline varied among the three histological types. A color score of 1 was typical of leiomyoma, a color score 2 was mainly observed in leiomyomas and smooth muscle tumors of uncertain malignant potential, a color score 3 did not differ among the tumors, while a color of score 4 was related to leiomyosarcomas. When combining color scores 3 and 4, leiomyosarcomas and smooth muscle tumors of uncertain malignant potential showed a high percentage of both circumferential and intra-lesional vascularization. A cooked appearance was not statistically different among the tumors. CONCLUSIONS Based on our findings, specific ultrasonographic features as well as age and menopausal status are associated with different uterine smooth muscle tumor types. Integration of these data can help the pre-operative assessment of these lesions for proper management.
Collapse
Affiliation(s)
- Fulvio Borella
- Division of Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Matteo Mancarella
- Azienda Ospedaliera Ordine Mauriziano di Torino, Torino, Piemonte, Italy
| | - Mario Preti
- Division of Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Luca Mariani
- Azienda Ospedaliera Ordine Mauriziano di Torino, Torino, Piemonte, Italy
| | - Ilaria Stura
- Department of Public Health and Pediatric Sciences, University of Turin, Torino, Piemonte, Italy
| | | | - Gianluca Bertschy
- Division of Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Beatrice Leuzzi
- Division of Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Elisa Piovano
- Division of Gynecology and Obstetrics 2, Department of Surgical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | | | | | - Ida Pino
- Preventive Gynecology Unit, Istituto Europeo di Oncologia, Milan, Italy
| | - Isabella Castellano
- Pathology Unit, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Stefano Cosma
- Division of Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| | - Dorella Franchi
- Preventive Gynecology Unit, Istituto Europeo di Oncologia, Milan, Italy
| | - Chiara Benedetto
- Division of Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science University Hospital, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Kolasa K, Admassu B, Hołownia-Voloskova M, Kędzior KJ, Poirrier JE, Perni S. Systematic reviews of machine learning in healthcare: a literature review. Expert Rev Pharmacoecon Outcomes Res 2024; 24:63-115. [PMID: 37955147 DOI: 10.1080/14737167.2023.2279107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION The increasing availability of data and computing power has made machine learning (ML) a viable approach to faster, more efficient healthcare delivery. METHODS A systematic literature review (SLR) of published SLRs evaluating ML applications in healthcare settings published between1 January 2010 and 27 March 2023 was conducted. RESULTS In total 220 SLRs covering 10,462 ML algorithms were reviewed. The main application of AI in medicine related to the clinical prediction and disease prognosis in oncology and neurology with the use of imaging data. Accuracy, specificity, and sensitivity were provided in 56%, 28%, and 25% SLRs respectively. Internal and external validation was reported in 53% and less than 1% of the cases respectively. The most common modeling approach was neural networks (2,454 ML algorithms), followed by support vector machine and random forest/decision trees (1,578 and 1,522 ML algorithms, respectively). EXPERT OPINION The review indicated considerable reporting gaps in terms of the ML's performance, both internal and external validation. Greater accessibility to healthcare data for developers can ensure the faster adoption of ML algorithms into clinical practice.
Collapse
Affiliation(s)
- Katarzyna Kolasa
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | - Bisrat Admassu
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | | | | | | | | |
Collapse
|
5
|
Liu X, Elbanan MG, Luna A, Haider MA, Smith AD, Sabottke CF, Spieler BM, Turkbey B, Fuentes D, Moawad A, Kamel S, Horvat N, Elsayes KM. Radiomics in Abdominopelvic Solid-Organ Oncologic Imaging: Current Status. AJR Am J Roentgenol 2022; 219:985-995. [PMID: 35766531 PMCID: PMC10616929 DOI: 10.2214/ajr.22.27695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiomics is the process of extraction of high-throughput quantitative imaging features from medical images. These features represent noninvasive quantitative biomarkers that go beyond the traditional imaging features visible to the human eye. This article first reviews the steps of the radiomics pipeline, including image acquisition, ROI selection and image segmentation, image preprocessing, feature extraction, feature selection, and model development and application. Current evidence for the application of radiomics in abdominopelvic solid-organ cancers is then reviewed. Applications including diagnosis, subtype determination, treatment response assessment, and outcome prediction are explored within the context of hepatobiliary and pancreatic cancer, renal cell carcinoma, prostate cancer, gynecologic cancer, and adrenal masses. This literature review focuses on the strongest available evidence, including systematic reviews, meta-analyses, and large multicenter studies. Limitations of the available literature are highlighted, including marked heterogeneity in radiomics methodology, frequent use of small sample sizes with high risk of overfitting, and lack of prospective design, external validation, and standardized radiomics workflow. Thus, although studies have laid a foundation that supports continued investigation into radiomics models, stronger evidence is needed before clinical adoption.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Joint Department of Medical Imaging, Division of Abdominal Imaging, University Health Network, University of Toronto, ON, Canada
| | - Mohamed G Elbanan
- Department of Radiology, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT
| | | | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, Canada
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ
| | - Bradley M Spieler
- Department of Radiology, University Medical Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmed Moawad
- Department of Diagnostic and Interventional Radiology, Mercy Catholic Medical Center, Darby, PA
| | - Serageldin Kamel
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khaled M Elsayes
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030
| |
Collapse
|
6
|
Preoperative Differentiation of Uterine Leiomyomas and Leiomyosarcomas: Current Possibilities and Future Directions. Cancers (Basel) 2022; 14:cancers14081966. [PMID: 35454875 PMCID: PMC9029111 DOI: 10.3390/cancers14081966] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
The distinguishing of uterine leiomyosarcomas (ULMS) and uterine leiomyomas (ULM) before the operation and histopathological evaluation of tissue is one of the current challenges for clinicians and researchers. Recently, a few new and innovative methods have been developed. However, researchers are trying to create different scales analyzing available parameters and to combine them with imaging methods with the aim of ULMs and ULM preoperative differentiation ULMs and ULM. Moreover, it has been observed that the technology, meaning machine learning models and artificial intelligence (AI), is entering the world of medicine, including gynecology. Therefore, we can predict the diagnosis not only through symptoms, laboratory tests or imaging methods, but also, we can base it on AI. What is the best option to differentiate ULM and ULMS preoperatively? In our review, we focus on the possible methods to diagnose uterine lesions effectively, including clinical signs and symptoms, laboratory tests, imaging methods, molecular aspects, available scales, and AI. In addition, considering costs and availability, we list the most promising methods to be implemented and investigated on a larger scale.
Collapse
|