1
|
Amaral MD, Pankonien I. Theranostics vs theratyping or theranostics plus theratyping? J Cyst Fibros 2024:S1569-1993(24)01782-X. [PMID: 39327193 DOI: 10.1016/j.jcf.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Treating all people with Cystic Fibrosis (pwCF) to the level of benefit achieved by highly efficient CFTR modulator therapies (HEMT) remains a significant challenge. Theratyping and theranostics are two distinct approaches to advance CF treatment. Both theratyping in cell lines and pwCF-derived biomaterials theranostics have unique strengths and limitations in the context of studying and treating CF. The challenges, advantages and disadvantages of both approaches are discussed here. While theratyping in cell lines offers ease of use, cost-effectiveness, and standardized platforms for experimentation, it misses physiological relevance and patient-specificity. Theranostics, on the other hand, provides a more human-relevant model for personalized medicine approaches but requires specialized expertise, resources, and access to patient samples. Integrating these two approaches in parallel and leveraging their respective strengths may enhance our understanding of CF and facilitate the development of more effective therapies for all pwCF.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal.
| | - Ines Pankonien
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Spelier S, de Winter-de Groot K, Keijzer-Nieuwenhuijze N, Liem Y, van der Ent K, Beekman J, Kamphuis LS. Organoid-guided synergistic treatment of minimal function CFTR mutations with CFTR modulators, roflumilast and simvastatin: a personalised approach. Eur Respir J 2024; 63:2300770. [PMID: 37857424 PMCID: PMC10809127 DOI: 10.1183/13993003.00770-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) protein-targeting modulator therapies (HEMTs) facilitate strong clinical improvements in a large proportion of people with cystic fibrosis (CF) [1, 2]. More specifically, the European Medicines Agency and US Food and Drug Administration (FDA) approved combination of the CFTR modulators elexacaftor/tezacaftor/ivacaftor (ETI) for people with CF with at least one F508del allele, while the FDA extended eligibility for several rare genotypes [3, 4]. However, 10–15% of those with CF carry CFTR mutations that are unresponsive to HEMTs as monotherapy [1]; furthermore, some suffer from HEMT intolerance, and HEMTs are sometimes not accessible due to practical challenges, such as lack of access due to high costs or legislation and approval challenges. Consequently, the focus in the CF research field has shifted towards filling the unmet clinical need for the people with CF that will not benefit from HEMTs. This study describes how preclinical research has guided a successful personalised clinical treatment regimen in a person with minimal function CFTR, upon a synergistic treatment regimen consisting of CFTR modulators, simvastatin and roflumilast https://bit.ly/3rDTHZL
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Karin de Winter-de Groot
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Natascha Keijzer-Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Yves Liem
- Department of Clinical Pharmacy, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Kors van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
- J. Beekman and L.S. Kamphuis contributed equally to this article as lead authors and supervised the work
| | - Lieke S Kamphuis
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- J. Beekman and L.S. Kamphuis contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
3
|
McNally P, Linnane B, Williamson M, Elnazir B, Short C, Saunders C, Kirwan L, David R, Kemner-Van de Corput MPC, Tiddens HAWM, Davies JC, Cox DW. The clinical impact of Lumacaftor-Ivacaftor on structural lung disease and lung function in children aged 6-11 with cystic fibrosis in a real-world setting. Respir Res 2023; 24:199. [PMID: 37568199 PMCID: PMC10416528 DOI: 10.1186/s12931-023-02497-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Data from clinical trials of lumacaftor-ivacaftor (LUM-IVA) demonstrate improvements in lung clearance index (LCI) but not in FEV1 in children with Cystic Fibrosis (CF) aged 6-11 years and homozygous for the Phe508del mutation. It is not known whether LUM/IVA use in children can impact the progression of structural lung disease. We sought to determine the real-world impact of LUM/IVA on lung structure and function in children aged 6-11 years. METHODS This real-world observational cohort study was conducted across four paediatric sites in Ireland over 24-months using spirometry-controlled CT scores and LCI as primary outcome measures. Children commencing LUM-/IVA as part of routine care were included. CT scans were manually scored with the PRAGMA CF scoring system and analysed using the automated bronchus-artery (BA) method. Secondary outcome measures included rate of change of ppFEV1, nutritional indices and exacerbations requiring hospitalisation. RESULTS Seventy-one participants were recruited to the study, 31 of whom had spirometry-controlled CT performed at baseline, and after one year and two years of LUM/IVA treatment. At two years there was a reduction from baseline in trapped air scores (0.13 to 0.07, p = 0.016), but an increase from baseline in the % bronchiectasis score (0.84 to 1.23, p = 0.007). There was no change in overall % disease score (2.78 to 2.25, p = 0.138). Airway lumen to pulmonary artery ratios (AlumenA ratio) were abnormal at baseline and worsened over the course of the study. In 28 participants, the mean annual change from baseline LCI2.5 (-0.055 (-0.61 to 0.50), p = 0.85) measurements over two years were not significant. Improvements from baseline in weight (0.10 (0.06 to 0.15, p < 0.0001), height (0.05 (0.02 to 0.09), p = 0.002) and BMI (0.09 (0.03 to 0.15) p = 0.005) z-scores were seen with LUM/IVA treatment. The mean annual change from baseline ppFEV1 (-2.45 (-4.44 to 2.54), p = 0.66) measurements over two years were not significant. CONCLUSION In a real-world setting, the use of LUM/IVA over two years in children with CF aged 6-11 resulted in improvements in air trapping on CT but worsening in bronchiectasis scores. Our results suggest that LUM/IVA use in this age group improves air trapping but does not prevent progression of bronchiectasis over two years of treatment.
Collapse
Affiliation(s)
- Paul McNally
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Barry Linnane
- University of Limerick School of Medicine, Limerick, Ireland
| | - Michael Williamson
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Basil Elnazir
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
- Trinity College, Dublin, Ireland
| | - Christopher Short
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Clare Saunders
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Laura Kirwan
- Cystic Fibrosis Registry of Ireland, Dublin, Ireland
| | - Rea David
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Mariette P C Kemner-Van de Corput
- Department of Paediatric Pulmonology and Allergology, Department of Radiology and Nuclear Medicine, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Jane C Davies
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Des W Cox
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland.
- University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Schütz K, Pallenberg ST, Kontsendorn J, DeLuca D, Sukdolak C, Minso R, Büttner T, Wetzke M, Dopfer C, Sauer-Heilborn A, Ringshausen FC, Junge S, Tümmler B, Hansen G, Dittrich AM. Spirometric and anthropometric improvements in response to elexacaftor/tezacaftor/ivacaftor depending on age and lung disease severity. Front Pharmacol 2023; 14:1171544. [PMID: 37469865 PMCID: PMC10352657 DOI: 10.3389/fphar.2023.1171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: Triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) was introduced in August 2020 in Germany for people with CF (pwCF) ≥12 years (yrs.) of age and in June 2021 for pwCF ≥6 yrs of age. In this single-center study, we analyzed longitudinal data on the percent-predicted forced expiratory volume (ppFEV1) and body-mass-index (BMI) for 12 months (mo.) after initiation of ETI by linear mixed models and regression analyses to identify age- and severity-dependent determinants of response to ETI. Methods: We obtained data on 42 children ≥6-11 yrs, 41 adolescents ≥12-17 yrs, and 143 adults by spirometry and anthropometry prior to ETI, and 3 and 12 mo. after ETI initiation. Data were stratified by the age group and further sub-divided into age-specific ppFEV1 impairment. To achieve this, the age strata were divided into three groups, each according to their baseline ppFEV1: lowest 25%, middle 50%, and top 25% of ppFEV1. Results: Adolescents and children with more severe lung disease prior to ETI (within the lowest 25% of age-specific ppFEV1) showed higher improvements in lung function than adults in this severity group (+18.5 vs. +7.5; p = 0.002 after 3 mo. and +13.8 vs. +7.2; p = 0.012 after 12 mo. of ETI therapy for ≥12-17 years and +19.8 vs. +7.5; p = 0.007 after 3 mo. for children ≥6-11 yrs). In all age groups, participants with more severe lung disease showed higher BMI gains than those with medium or good lung function (within the middle 50% or top 25% of age-specific ppFEV1). Regression analyses identified age as a predictive factor for FEV1 increase at 3 mo. after ETI initiation, and age and ppFEV1 at ETI initiation as predictive factors for FEV1 increase 12 mo. after ETI initiation. Discussion: We report initial data, which suggest that clinical response toward ETI depends on age and lung disease severity prior to ETI initiation, which argue for early initiation of ETI.
Collapse
Affiliation(s)
- Katharina Schütz
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sophia Theres Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Julia Kontsendorn
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - David DeLuca
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Cinja Sukdolak
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tina Büttner
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Sibylle Junge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Abstract
Cystic fibrosis (CF) is an inherited multisystemic disease that can cause progressive bronchiectasis, pancreatic endocrine and exocrine insufficiency, distal intestinal obstruction syndrome, liver dysfunction, and other disorders. Traditional therapies focused on the treatment or prevention of damage to each organ system with incremental modalities such as nebulized medications for the lungs, insulin for diabetes, and supplementation with pancreatic enzymes. However, the advent of highly effective modulator therapies that target specific cystic fibrosis transmembrane conductance regulator protein malformations resulting from individual genetic mutations has transformed the lives and prognosis for persons with CF.
Collapse
Affiliation(s)
- Shijing Jia
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jennifer L Taylor-Cousar
- Divisions of Pulmonary Sciences and Critical Care Medicine and Pediatric Pulmonology, National Jewish Health, Denver, Colorado, USA;
| |
Collapse
|
6
|
Standards of care for CFTR variant-specific therapy (including modulators) for people with cystic fibrosis. J Cyst Fibros 2023; 22:17-30. [PMID: 36916675 DOI: 10.1016/j.jcf.2022.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Cystic fibrosis (CF) has entered the era of variant-specific therapy, tailored to the genetic variants in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators, the first variant-specific therapy available, have transformed the management of CF. The latest standards of care from the European CF Society (2018) did not include guidance on variant-specific therapy, as CFTR modulators were becoming established as a novel therapy. We have produced interim standards to guide healthcare professionals in the provision of variant-specific therapy for people with CF. Here we provide evidence-based guidance covering the spectrum of care, established using evidence from systematic reviews and expert opinion. Statements were reviewed by key stakeholders using Delphi methodology, with agreement (≥80%) achieved for all statements after one round of consultation. Issues around accessibility are discussed and there is clear consensus that all eligible people with CF should have access to variant-specific therapy.
Collapse
|
7
|
Dittrich AM, Chuang SY. Dual CFTR modulator therapy efficacy in the real world: lessons for the future. ERJ Open Res 2022; 8:00464-2022. [PMID: 36382239 PMCID: PMC9661234 DOI: 10.1183/23120541.00464-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Stringent analyses caution against drawing conclusions about the real-world efficacy of CFTR modulator therapy too early https://bit.ly/3dJt6no.
Collapse
Affiliation(s)
- Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Sandra Y. Chuang
- Discipline of Paediatric and Child Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Respiratory Medicine Department, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
8
|
Muilwijk D, Zomer-van Ommen DD, Gulmans VA, Eijkemans MJ, van der Ent CK. Long-term effectiveness of dual CFTR modulator treatment of cystic fibrosis. ERJ Open Res 2022; 8:00204-2022. [PMID: 36382237 PMCID: PMC9661249 DOI: 10.1183/23120541.00204-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Although short-term efficacy of lumacaftor/ivacaftor and tezacaftor/ivacaftor is clearly established in clinical trials, data on long-term effectiveness is limited. This registry-based cohort study assessed real-world longitudinal outcomes of F508del-homozygous people with cystic fibrosis (pwCF) ≥12 years, up to 3 years after the introduction of dual cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Methods Annual data (2010-2019) were retrieved from the Dutch Cystic Fibrosis Registry. Longitudinal trends of per cent predicted forced expiratory volume in 1 s (FEV1 % pred) decline, body mass index (BMI), BMI Z-score and intravenous antibiotic treatment duration before and after CFTR modulator initiation were assessed with linear and negative binomial mixed models. Results We included 401 participants (41.9% female, baseline age 24.5 years (IQR 18.0-31.5 years), baseline mean±sd FEV1 70.5±23.4% pred). FEV1 decline improved from -1.36% pred per year to -0.48% pred per year after modulator initiation (change: 0.88% pred, 95% CI: 0.35-1.39%, p=0.001). This change was even 1.40% pred per year (95% CI: -0.0001-2.82%, p=0.050) higher in participants with baseline FEV1 <40% pred. In adults, annual BMI trend was not altered (change: 0.10 kg·m-2·year-1, 95% CI:-0.01-0.21, p=0.079). Annual BMI Z-score in children reversed from -0.08 per year before modulator treatment to 0.06 per year afterwards (change: 0.14 per year, 95% CI: 0.06-0.22, p<0.001). Intravenous antibiotic treatment duration showed a three-fold reduction in the first year after modulator initiation (incidence rate ratios (IRR): 0.28, 95% CI: 0.19-0.40, p<0.001), but the annual trend did not change in the subsequent years (IRR: 1.19, 95% CI: 0.94-1.50, p=0.153). Conclusion Long-term effectiveness of dual CFTR modulator therapies on FEV1 decline, BMI and intravenous antibiotic treatment duration is less pronounced in a real-world setting than in clinical trials and varies considerably between pwCF and different baseline FEV1 levels.
Collapse
Affiliation(s)
- Danya Muilwijk
- Department of Pediatric Pulmonology, University Medical Center Utrecht, loc. Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Domenique D. Zomer-van Ommen
- Dutch Cystic Fibrosis Foundation (NCFS), Baarn, The Netherlands
- On behalf of the Dutch CF Registry Steering Group
| | - Vincent A.M. Gulmans
- Dutch Cystic Fibrosis Foundation (NCFS), Baarn, The Netherlands
- On behalf of the Dutch CF Registry Steering Group
| | - Marinus J.C. Eijkemans
- Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Pulmonology, University Medical Center Utrecht, loc. Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
9
|
Dawood SN, Rabih AM, Niaj A, Raman A, Uprety M, Calero MJ, Villanueva MRB, Joshaghani N, Villa N, Badla O, Goit R, Saddik SE, Mohammed L. Newly Discovered Cutting-Edge Triple Combination Cystic Fibrosis Therapy: A Systematic Review. Cureus 2022; 14:e29359. [PMID: 36284811 PMCID: PMC9583755 DOI: 10.7759/cureus.29359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
A cystic fibrosis (CF) transmembrane conductor regulator (CFTR) gene modulating triple therapy combining elexacaftor-tezacaftor-ivacaftor (Trikafta) has been recently discovered. Its approval by the Food and Drug Administration (FDA) in 2019 has expanded the target therapy group to individuals aged twelve and up with at least one Phe508del (phenylalanine 508 deletion) mutation in the CFTR gene. This systematic review aims to assess this combination therapy's safety and efficacy. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, an in-depth search was performed. The search was done by utilizing databases such as PubMed Central (PMC), Google Scholar, and Science Direct for articles related to this topic. Studies published in the last five years in the English language were chosen preliminarily. Further eligibility criteria and quality assessment tools were employed to assess the risk of bias and finalize ten articles to be used in this review. The chosen articles constituted four randomized control trials (RCTs), four systematic reviews, and two narrative reviews. The last date for data collection was April 24, 2022. Based on the findings of this review, we concluded that by combining three CFTR modulators, this therapy had outperformed all the currently available medications in terms of improving pulmonary function, reducing exacerbations, and enhancing the quality of life of CF patients. In clinical trials, headache and rash were the most common side effects, and laboratory testing to assess liver function is suggested. Long-term safety and effectiveness must be confirmed by the continued review of real-life patient data. Studies done on triple therapy thus far have been promising. Unfortunately, a small proportion of the CF population remains ineligible for any form of CFTR modulator therapy owing to their type of genetic mutation, and this provides ground for further research in this field.
Collapse
Affiliation(s)
- Sarah N Dawood
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmad M Rabih
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmad Niaj
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aishwarya Raman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Manish Uprety
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Jose Calero
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Narges Joshaghani
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nicole Villa
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Omar Badla
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raman Goit
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Samia E Saddik
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|