1
|
Wei J, Yan H, Shao X, Zhao L, Han L, Yan P, Wang S. A machine learning-based hybrid recommender framework for smart medical systems. PeerJ Comput Sci 2024; 10:e1880. [PMID: 38435594 PMCID: PMC10909219 DOI: 10.7717/peerj-cs.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This article presents a hybrid recommender framework for smart medical systems by introducing two methods to improve service level evaluations and doctor recommendations for patients. The first method uses big data techniques and deep learning algorithms to develop a registration review system in medical institutions. This system outperforms conventional evaluation methods, thus achieving higher accuracy. The second method implements the term frequency and inverse document frequency (TF-IDF) algorithm to construct a model based on the patient's symptom vector space, incorporating score weighting, modified cosine similarity, and K-means clustering. Then, the alternating least squares (ALS) matrix decomposition and user collaborative filtering algorithm are applied to calculate patients' predicted scores for doctors and recommend top-performing doctors. Experimental results show significant improvements in metrics called precision and recall rates compared to conventional methods, making the proposed approach a practical solution for department triage and doctor recommendation in medical appointment platforms.
Collapse
Affiliation(s)
- Jianhua Wei
- The Bidding Procurement Office, The First Affiliated Hospital of Xi’an Medical University, Xian, China
| | - Honglin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xian, China
| | - Xiaoli Shao
- Hospital Evaluation and Accreditation Office, The First Affiliated Hospital of Xi’an Medical University, Xian, China
| | - Lili Zhao
- Department of Scientific Research, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Lin Han
- Hospital Evaluation and Accreditation Office, The First Affiliated Hospital of Xi’an Medical University, Xian, China
| | - Peng Yan
- The Bidding Procurement Office, The First Affiliated Hospital of Xi’an Medical University, Xian, China
| | - Shengyu Wang
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| |
Collapse
|
2
|
Wang Y, Shi Y, He Z, Chen Z, Zhou Y. Combining temporal and spatial attention for seizure prediction. Health Inf Sci Syst 2023; 11:38. [PMID: 37637435 PMCID: PMC10447681 DOI: 10.1007/s13755-023-00239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Approximately 1% of the world population is currently suffering from epilepsy. Successful seizure prediction is necessary for those patients. Influenced by neurons in their own and surrounding locations, the electroencephalogram (EEG) signals collected by scalp electrodes carry information of spatiotemporal interactions. Therefore, it is a great challenge to exploit the spatiotemporal information of EEG signals fully. Methods In this paper, a new seizure prediction model called Gatformer is proposed by fusing the graph attention network (GAT) and the Transformer. The temporal and spatial attention are combined to extract EEG information from the perspective of spatiotemporal interactions. The model aims to explore the temporal dependence of single-channel EEG signals and the spatial correlations among multi-channel EEG signals. It can automatically identify the most noteworthy interaction in brain regions and achieve accurate seizure prediction. Results Compared with the baseline models, the performance of our model is significantly improved. The false prediction rate (FPR) on the private dataset is 0.0064/h. The average accuracy, specificity and sensitivity are 98.25%, 99.36% and 97.65%. Conclusion The proposed model is comparable to the state of the arts. Experiments on different datasets show that it has good robustness and generalization performance. The high sensitivity and low FPR prove that this model has great potential to realize clinical assistance for diagnosis and treatment.
Collapse
Affiliation(s)
- Yao Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006 Guangdong China
| | - Yufei Shi
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Zhipeng He
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Ziyi Chen
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Yi Zhou
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| |
Collapse
|
3
|
Gaiduk M, Serrano Alarcón Á, Seepold R, Martínez Madrid N. Current status and prospects of automatic sleep stages scoring: Review. Biomed Eng Lett 2023; 13:247-272. [PMID: 37519865 PMCID: PMC10382458 DOI: 10.1007/s13534-023-00299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 08/01/2023] Open
Abstract
The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable human and financial resources, and incorporates some subjectivity, an automated approach could result in several advantages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article. To achieve it, we examined articles published between 2018 and 2022 that dealt with the automated scoring of sleep stages. In the final selection for in-depth analysis, 125 articles were included after reviewing a total of 515 publications. The results revealed that automatic scoring demonstrates good quality (with Cohen's kappa up to over 0.80 and accuracy up to over 90%) in analysing EEG/EEG + EOG + EMG signals. At the same time, it should be noted that there has been no breakthrough in the quality of results using these signals in recent years. Systems involving other signals that could potentially be acquired more conveniently for the user (e.g. respiratory, cardiac or movement signals) remain more challenging in the implementation with a high level of reliability but have considerable innovation capability. In general, automatic sleep stage scoring has excellent potential to assist medical professionals while providing an objective assessment.
Collapse
Affiliation(s)
- Maksym Gaiduk
- HTWG Konstanz – University of Applied Sciences, Alfred-Wachtel-Str.8, 78462 Konstanz, Germany
| | | | - Ralf Seepold
- HTWG Konstanz – University of Applied Sciences, Alfred-Wachtel-Str.8, 78462 Konstanz, Germany
| | | |
Collapse
|
4
|
Alarcón ÁS, Madrid NM, Seepold R, Ortega JA. Obstructive sleep apnea event detection using explainable deep learning models for a portable monitor. Front Neurosci 2023; 17:1155900. [PMID: 37521695 PMCID: PMC10375719 DOI: 10.3389/fnins.2023.1155900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Background Polysomnography (PSG) is the gold standard for detecting obstructive sleep apnea (OSA). However, this technique has many disadvantages when using it outside the hospital or for daily use. Portable monitors (PMs) aim to streamline the OSA detection process through deep learning (DL). Materials and methods We studied how to detect OSA events and calculate the apnea-hypopnea index (AHI) by using deep learning models that aim to be implemented on PMs. Several deep learning models are presented after being trained on polysomnography data from the National Sleep Research Resource (NSRR) repository. The best hyperparameters for the DL architecture are presented. In addition, emphasis is focused on model explainability techniques, concretely on Gradient-weighted Class Activation Mapping (Grad-CAM). Results The results for the best DL model are presented and analyzed. The interpretability of the DL model is also analyzed by studying the regions of the signals that are most relevant for the model to make the decision. The model that yields the best result is a one-dimensional convolutional neural network (1D-CNN) with 84.3% accuracy. Conclusion The use of PMs using machine learning techniques for detecting OSA events still has a long way to go. However, our method for developing explainable DL models demonstrates that PMs appear to be a promising alternative to PSG in the future for the detection of obstructive apnea events and the automatic calculation of AHI.
Collapse
Affiliation(s)
- Ángel Serrano Alarcón
- School of Informatics, Reutlingen University, Reutlingen, Germany
- Computer Languages and Systems, University of Seville, Sevilla, Spain
| | | | - Ralf Seepold
- Computer Science, HTWG Konstanz, Konstanz, Germany
| | | |
Collapse
|
5
|
Al-Salman W, Li Y, Oudah AY, Almaged S. Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neurosci Res 2023; 188:51-67. [PMID: 36152918 DOI: 10.1016/j.neures.2022.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
Sleep scoring is one of the primary tasks for the classification of sleep stages in Electroencephalogram (EEG) signals. Manual visual scoring of sleep stages is time-consuming as well as being dependent on the experience of a highly qualified sleep expert. This paper aims to address these issues by developing a new method to automatically classify sleep stages in EEG signals. In this research, a robust method has been presented based on the clustering approach, coupled with probability distribution features, to identify six sleep stages with the use of EEG signals. Using this method, each 30-second EEG signal is firstly segmented into small epochs and then each epoch is divided into 60 sub-segments. Each sub-segment is decomposed into five levels by using a discrete wavelet transform (DWT) to obtain the approximation and detailed coefficient. The wavelet coefficient of each level is clustered using the k-means algorithm. Subsequently, features are extracted based on the probability distribution for each wavelet coefficient. The extracted features then are forwarded to the least squares support vector machine classifier (LS-SVM) to identify sleep stages. Comparisons with several existing methods are also made in this study. The proposed method for the classification of the sleep stages achieves an average accuracy rate of 97.4%. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.
Collapse
Affiliation(s)
- Wessam Al-Salman
- School of Mathematics, Physics and Computing, University of Southern Queensland, Australia; University of Thi-Qar, College of Education for Pure Science, Iraq.
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Australia; School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Atheer Y Oudah
- University of Thi-Qar, College of Education for Pure Science, Iraq; Information and Communication Technology Research Group, Scientific Research Centre, Al-Ayen University, Thi-Qar, Iraq
| | | |
Collapse
|
6
|
Nazih W, Shahin M, Eldesouki MI, Ahmed B. Influence of Channel Selection and Subject's Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms. SENSORS (BASEL, SWITZERLAND) 2023; 23:899. [PMID: 36679711 PMCID: PMC9866121 DOI: 10.3390/s23020899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing sleep staging algorithms is questionable. Furthermore, most reported experimental results have been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies how the performance of these sleep staging algorithms varies when applied on different EEG channels and across different age groups. Furthermore, all results were analyzed within individual sleep stages to understand how each stage is affected by the choice of EEG channel and the participants' age. The study concluded that the selection of the channel is crucial for the accuracy of the single-channel EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed consistently worse than other channels for both algorithms and through all age groups. The study also revealed the challenges in the automatic sleep staging of newborns and infants (1-52 weeks).
Collapse
Affiliation(s)
- Waleed Nazih
- College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mostafa Shahin
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohamed I. Eldesouki
- College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Beena Ahmed
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Xie J, Zhang J, Sun J, Ma Z, Qin L, Li G, Zhou H, Zhan Y. A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2126-2136. [PMID: 35914032 DOI: 10.1109/tnsre.2022.3194600] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The attention mechanism of the Transformer has the advantage of extracting feature correlation in the long-sequence data and visualizing the model. As time-series data, the spatial and temporal dependencies of the EEG signals between the time points and the different channels contain important information for accurate classification. So far, Transformer-based approaches have not been widely explored in motor-imagery EEG classification and visualization, especially lacking general models based on cross-individual validation. Taking advantage of the Transformer model and the spatial-temporal characteristics of the EEG signals, we designed Transformer-based models for classifications of motor imagery EEG based on the PhysioNet dataset. With 3s EEG data, our models obtained the best classification accuracy of 83.31%, 74.44%, and 64.22% on two-, three-, and four-class motor-imagery tasks in cross-individual validation, which outperformed other state-of-the-art models by 0.88%, 2.11%, and 1.06%. The inclusion of the positional embedding modules in the Transformer could improve the EEG classification performance. Furthermore, the visualization results of attention weights provided insights into the working mechanism of the Transformer-based networks during motor imagery tasks. The topography of the attention weights revealed a pattern of event-related desynchronization (ERD) which was consistent with the results from the spectral analysis of Mu and beta rhythm over the sensorimotor areas. Together, our deep learning methods not only provide novel and powerful tools for classifying and understanding EEG data but also have broad applications for brain-computer interface (BCI) systems.
Collapse
|