1
|
Zhang PH, Wu DB, Liu J, Wen JT, Chen ES, Xiao CH. Proteomics analysis of lung tissue reveals protein makers for the lung injury of adjuvant arthritis rats. Mol Med Rep 2023; 28:163. [PMID: 37449522 PMCID: PMC10407615 DOI: 10.3892/mmr.2023.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Lung injury is one of the common extra‑articular lesions in rheumatoid arthritis (RA). Due to its insidious onset and no obvious clinical symptoms, it can be easily dismissed in the early stage of diagnosis, which is one of the reasons that leads to a decline of the quality of life and subsequent death of patients with RA. However, its pathogenesis is still unclear and there is a lack of effective therapeutic targets. In the present study, tandem mass tag‑labeled proteomics was used to research the lung tissue proteins in RA model (adjuvant arthritis, AA) rats that had secondary lung injury. The aim of the present study was to identify the differentially expressed proteins related to RA‑lung injury, determine their potential role in the pathogenesis of RA‑lung injury and provide potential targets for clinical treatment. Lung tissue samples were collected from AA‑lung injury and normal rats. The differentially expressed proteins (DEPs) were identified by tandem mass spectrometry. Bioinformatic analysis was used to assess the biological processes and signaling pathways associated with these DEPs. A total of 310 DEPs were found, of which 244 were upregulated and 66 were downregulated. KEGG anlysis showed that 'fatty acid degradation', 'fatty acid metabolism', 'fatty acid elongation', 'complement and coagulation cascades', 'peroxisome proliferator‑activated receptor signaling pathway' and 'hypoxia‑inducible factor signaling pathway' were significantly upregulated in the lung tissues of AA‑lung injury. Immunofluorescence staining confirmed the increased expression of clusterin, serine protease inhibitors and complement 1qc in lung tissue of rats with AA lung injury. In the present study, the results revealed the significance of certain DEPs (for example, C9, C1qc and Clu) in the occurrence and development of RA‑lung injury and provided support through experiments to identify potential biomarkers for the early diagnosis and prevention of RA‑lung injury.
Collapse
Affiliation(s)
- Ping-Heng Zhang
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Dan-Bin Wu
- Department of Traditional Chinese Medicine, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Jian-Ting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - En-Sheng Chen
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Chang-Hong Xiao
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
2
|
Triggianese P, Conigliaro P, De Martino E, Monosi B, Chimenti MS. Overview on the Link Between the Complement System and Auto-Immune Articular and Pulmonary Disease. Open Access Rheumatol 2023; 15:65-79. [PMID: 37214353 PMCID: PMC10198272 DOI: 10.2147/oarrr.s318826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Complement system (CS) dysregulation is a key factor in the pathogenesis of different autoimmune diseases playing a central role in many immune innate and adaptive processes. Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by ta breach of self-tolerance leading to a synovitis and extra-articular manifestations. The CS is activated in RA and seems not only to mediate direct tissue damage but also play a role in the initiation of RA pathogenetic mechanisms through interactions with citrullinated proteins. Interstitial lung disease (ILD) represents the most common extra-articular manifestation that can lead to progressive fibrosis. In this review, we focused on the evidence of CS dysregulation in RA and in ILD, and highlighted the role of the CS in both the innate and adaptive immune responses in the development of diseases, by using idiopathic pulmonary fibrosis as a model of lung disease. As a proof of concept, we dissected the evidence that several treatments used to treat RA and ILD such as glucocorticoids, pirfenidone, disease modifying antirheumatic drugs, targeted biologics such as tumor necrosis factor (TNF)-inhibitors, rituximab, tocilizumab, and nintedanib may act indirectly on the CS, suggesting that the CS might represent a potential therapeutic target in these complex diseases.
Collapse
Affiliation(s)
- Paola Triggianese
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Erica De Martino
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Benedetta Monosi
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Leodori G, Pellicano C, Basile V, Colalillo A, Navarini L, Gigante A, Gulli F, Marino M, Basile U, Rosato E. Serum Adiponectin, a Novel Biomarker Correlates with Skin Thickness in Systemic Sclerosis. J Pers Med 2022; 12:jpm12101737. [PMID: 36294874 PMCID: PMC9604668 DOI: 10.3390/jpm12101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
The aim was to evaluate the longitudinal association between basal serum adiponectin and repeated measurements of skin thickness during 12 months of follow-up in systemic sclerosis (SSc) patients. We enrolled SSc patients with disease duration > 2 years in a prospective observational study. Skin thickness was measured at baseline and after 12 months of follow-up with modified Rodnan skin score (mRSS). Baseline serum adiponectin was determined using a commercial ELISA kit. We enrolled 66 female SSc patients (median age 54 years, IQR 42−62 years). The median disease duration was 12 (IQR 8−16) years and median baseline serum adiponectin was 9.8 (IQR 5.6−15.6) mcg/mL. The median mRSS was 10 (IQR 6−18) at baseline and 12 (IQR 7−18) at follow-up. A significant correlation was observed between baseline serum adiponectin and disease duration (r = 0.264, p < 0.05), age (r = 0.515, p < 0.0001), baseline mRSS (r = −0.303, p < 0.05), and mRSS at follow-up (r = −0.322, p < 0.001). In multiple regression analysis, only mRSS at follow-up showed an inverse correlation with baseline serum adiponectin (β = −0.132, p < 0.01). The reduction in serum adiponectin levels is correlated with skin thickness.
Collapse
Affiliation(s)
- Giorgia Leodori
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Amalia Colalillo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Luca Navarini
- Unit of Allergology, Clinical Immunology and Rheumatology, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Francesca Gulli
- Clinical Biochemistry Laboratory, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy
| | - Mariapaola Marino
- Department of Translational Medicine and Surgery, Section of General Pathology, “A. Gemelli” IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence: (M.M.); (U.B.)
| | - Umberto Basile
- Department of Laboratory and Infectious Disease Sciences, “A. Gemelli” IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence: (M.M.); (U.B.)
| | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
4
|
Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules 2022; 12:biom12050737. [PMID: 35625664 PMCID: PMC9138980 DOI: 10.3390/biom12050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Collapse
|