6
|
Doppler D, Sonker M, Egatz-Gomez A, Grieco A, Zaare S, Jernigan R, Meza-Aguilar JD, Rabbani MT, Manna A, Alvarez RC, Karpos K, Cruz Villarreal J, Nelson G, Yang JH, Carrion J, Morin K, Ketawala GK, Pey AL, Ruiz-Fresneda MA, Pacheco-Garcia JL, Hermoso JA, Nazari R, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Lisova S, Mariani V, Boutet S, Fromme R, Grant TD, Botha S, Fromme P, Kirian RA, Martin-Garcia JM, Ros A. Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme. LAB ON A CHIP 2023; 23:3016-3033. [PMID: 37294576 PMCID: PMC10503405 DOI: 10.1039/d3lc00176h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jose Domingo Meza-Aguilar
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Roberto C Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Garrett Nelson
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jay-How Yang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jackson Carrion
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Katherine Morin
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Gihan K Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Miguel Angel Ruiz-Fresneda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Mark S Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Christopher J Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Robert E Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Richard A Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| |
Collapse
|
10
|
Pacheco-Garcia JL, Anoz-Carbonell E, Loginov DS, Vankova P, Salido E, Man P, Medina M, Palomino-Morales R, Pey AL. Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations. Arch Biochem Biophys 2022; 729:109392. [PMID: 36096178 DOI: 10.1016/j.abb.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Rogelio Palomino-Morales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences and Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|