1
|
Liang P, Chen J, Wu Y, Pu B, Huang H, Chang Q, Ran G. Data free knowledge distillation with feature synthesis and spatial consistency for image analysis. Sci Rep 2024; 14:27557. [PMID: 39528541 PMCID: PMC11555069 DOI: 10.1038/s41598-024-78757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Privacy and security concerns restrict access to original training datasets, posing significant challenges for model compression. Data-Free Knowledge Distillation (DFKD) emerges as a solution, aiming to transfer knowledge from teacher to student networks without accessing original data. Existing DFKD methods struggle to generate high-quality synthetic samples that capture the complexities of real-world data, leading to suboptimal knowledge transfer. Moreover, these approaches often fail to preserve the spatial attributes of the teacher network, resulting in shortcut learning and limited generalization.To address these issues, a novel DFKD strategy is proposed with three innovations: (1) an enhanced DCGAN generator with an attention module for synthesizing samples with improved micro-discriminative features; (2) a Multi-Scale Spatial Activation Region Consistency (MSARC) mechanism to accurately replicate the teacher's spatial attributes; and (3) an adversarial learning framework that creates a dynamic competitive environment between the generative and distillation phases. Rigorous evaluation of the method on several benchmark datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and medical imaging datasets such as PathMNIST, BloodMNIST, and PneumoniaMNIST, demonstrates superior performance compared to existing DFKD methods. Specifically, on CIFAR-100, the student network attains an accuracy of 77.85%, surpassing previous methods like CMI and SpaceshipNet. On BloodMNIST, the method achieves an accuracy of 80.50%, outperforming the next best method by over 5%.
Collapse
Affiliation(s)
- Pengchen Liang
- The Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Jianguo Chen
- School of Software Engineering, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yan Wu
- Huangdu Community Health Service Center, Shanghai, 201800, China
| | - Bin Pu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Haishan Huang
- School of Software Engineering, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Qing Chang
- The Department Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201800, China.
| | - Guo Ran
- The Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
2
|
Vrettos K, Koltsakis E, Zibis AH, Karantanas AH, Klontzas ME. Generative adversarial networks for spine imaging: A critical review of current applications. Eur J Radiol 2024; 171:111313. [PMID: 38237518 DOI: 10.1016/j.ejrad.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE In recent years, the field of medical imaging has witnessed remarkable advancements, with innovative technologies which revolutionized the visualization and analysis of the human spine. Among the groundbreaking developments in medical imaging, Generative Adversarial Networks (GANs) have emerged as a transformative tool, offering unprecedented possibilities in enhancing spinal imaging techniques and diagnostic outcomes. This review paper aims to provide a comprehensive overview of the use of GANs in spinal imaging, and to emphasize their potential to improve the diagnosis and treatment of spine-related disorders. A specific review focusing on Generative Adversarial Networks (GANs) in the context of medical spine imaging is needed to provide a comprehensive and specialized analysis of the unique challenges, applications, and advancements within this specific domain, which might not be fully addressed in broader reviews covering GANs in general medical imaging. Such a review can offer insights into the tailored solutions and innovations that GANs bring to the field of spinal medical imaging. METHODS An extensive literature search from 2017 until July 2023, was conducted using the most important search engines and identified studies that used GANs in spinal imaging. RESULTS The implementations include generating fat suppressed T2-weighted (fsT2W) images from T1 and T2-weighted sequences, to reduce scan time. The generated images had a significantly better image quality than true fsT2W images and could improve diagnostic accuracy for certain pathologies. GANs were also utilized in generating virtual thin-slice images of intervertebral spaces, creating digital twins of human vertebrae, and predicting fracture response. Lastly, they could be applied to convert CT to MRI images, with the potential to generate near-MR images from CT without MRI. CONCLUSIONS GANs have promising applications in personalized medicine, image augmentation, and improved diagnostic accuracy. However, limitations such as small databases and misalignment in CT-MRI pairs, must be considered.
Collapse
Affiliation(s)
- Konstantinos Vrettos
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
| | - Emmanouil Koltsakis
- Department of Radiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Aristeidis H Zibis
- Department of Anatomy, Medical School, University of Thessaly, Larissa, Greece
| | - Apostolos H Karantanas
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece; Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece; Department of Medical Imaging, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Michail E Klontzas
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece; Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece; Department of Medical Imaging, University Hospital of Heraklion, Heraklion, Crete, Greece.
| |
Collapse
|
3
|
Belue MJ, Harmon SA, Masoudi S, Barrett T, Law YM, Purysko AS, Panebianco V, Yilmaz EC, Lin Y, Jadda PK, Raavi S, Wood BJ, Pinto PA, Choyke PL, Turkbey B. Quality of T2-weighted MRI re-acquisition versus deep learning GAN image reconstruction: A multi-reader study. Eur J Radiol 2024; 170:111259. [PMID: 38128256 PMCID: PMC10842312 DOI: 10.1016/j.ejrad.2023.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To evaluate CycleGAN's ability to enhance T2-weighted image (T2WI) quality. METHOD A CycleGAN algorithm was used to enhance T2WI quality. 96 patients (192 scans) were identified from patients who underwent multiple axial T2WI due to poor quality on the first attempt (RAD1) and improved quality on re-acquisition (RAD2). CycleGAN algorithm gave DL classifier scores (0-1) for quality quantification and produced enhanced versions of QI1 and QI2 from RAD1 and RAD2, respectively. A subset (n = 20 patients) was selected for a blinded, multi-reader study, where four radiologists rated T2WI on a scale of 1-4 for quality. The multi-reader study presented readers with 60 image pairs (RAD1 vs RAD2, RAD1 vs QI1, and RAD2 vs QI2), allowing for selecting sequence preferences and quantifying the quality changes. RESULTS The DL classifier correctly discerned 71.9 % of quality classes, with 90.6 % (96/106) as poor quality and 48.8 % (42/86) as diagnostic in original sequences (RAD1, RAD2). CycleGAN images (QI1, QI2) demonstrated quantitative improvements, with consistently higher DL classifier scores than original scans (p < 0.001). In the multi-reader analysis, CycleGAN demonstrated no qualitative improvements, with diminished overall quality and motion in QI2 in most patients compared to RAD2, with noise levels remaining similar (8/20). No readers preferred QI2 to RAD2 for diagnosis. CONCLUSION Despite quantitative enhancements with CycleGAN, there was no qualitative boost in T2WI diagnostic quality, noise, or motion. Expert radiologists didn't favor CycleGAN images over standard scans, highlighting the divide between quantitative and qualitative metrics.
Collapse
Affiliation(s)
- Mason J Belue
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Tristan Barrett
- Department of Radiology, University of Cambridge, Cambridge, England
| | - Yan Mee Law
- Department of Radiology, Singapore General Hospital, Singapore
| | - Andrei S Purysko
- Section of Abdominal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Enis C Yilmaz
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yue Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pavan Kumar Jadda
- Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Sitarama Raavi
- Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, National Cancer Institute, NIH, Bethesda, MD, USA; Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Chen X, Liu X, Wu Y, Wang Z, Wang SH. Research related to the diagnosis of prostate cancer based on machine learning medical images: A review. Int J Med Inform 2024; 181:105279. [PMID: 37977054 DOI: 10.1016/j.ijmedinf.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Prostate cancer is currently the second most prevalent cancer among men. Accurate diagnosis of prostate cancer can provide effective treatment for patients and greatly reduce mortality. The current medical imaging tools for screening prostate cancer are mainly MRI, CT and ultrasound. In the past 20 years, these medical imaging methods have made great progress with machine learning, especially the rise of deep learning has led to a wider application of artificial intelligence in the use of image-assisted diagnosis of prostate cancer. METHOD This review collected medical image processing methods, prostate and prostate cancer on MR images, CT images, and ultrasound images through search engines such as web of science, PubMed, and Google Scholar, including image pre-processing methods, segmentation of prostate gland on medical images, registration between prostate gland on different modal images, detection of prostate cancer lesions on the prostate. CONCLUSION Through these collated papers, it is found that the current research on the diagnosis and staging of prostate cancer using machine learning and deep learning is in its infancy, and most of the existing studies are on the diagnosis of prostate cancer and classification of lesions, and the accuracy is low, with the best results having an accuracy of less than 0.95. There are fewer studies on staging. The research is mainly focused on MR images and much less on CT images, ultrasound images. DISCUSSION Machine learning and deep learning combined with medical imaging have a broad application prospect for the diagnosis and staging of prostate cancer, but the research in this area still has more room for development.
Collapse
Affiliation(s)
- Xinyi Chen
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xiang Liu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yuke Wu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhenglei Wang
- Department of Medical Imaging, Shanghai Electric Power Hospital, Shanghai 201620, China.
| | - Shuo Hong Wang
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|