1
|
Sabrina Haque U, Kohut M, Yokota T. Comprehensive review of adverse reactions and toxicology in ASO-based therapies for Duchenne Muscular Dystrophy: From FDA-approved drugs to peptide-conjugated ASO. Curr Res Toxicol 2024; 7:100182. [PMID: 38983605 PMCID: PMC11231654 DOI: 10.1016/j.crtox.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a devastating X-linked genetic disorder characterized by progressive muscle degeneration due to mutations in the dystrophin gene. This results in the absence or dysfunction of the dystrophin protein, leading to muscle weakness, loss of ambulation, respiratory issues, and cardiac complications, often leading to premature death. Recently, antisense oligonucleotide (ASO)-mediated exon skipping has emerged as a promising therapeutic strategy for DMD. Notably, the FDA has conditionally approved four ASO therapies for DMD, with numerous others in various stages of clinical development, indicating the growing interest and potential in this field. To enhance ASO-based therapies, researchers have explored the novel concept of conjugating peptides to the phosphorodiamidate morpholino backbone (PMO) of ASOs, leading to the development of peptide-conjugated PMOs (PPMOs). These PPMOs have demonstrated significantly improved pharmacokinetic profiles, potentially augmenting their therapeutic effectiveness. Despite the optimism surrounding ASOs and PPMOs, concerns persist regarding their efficacy and safety. To comprehensively evaluate these therapies, it is imperative to expand patient populations in clinical trials and conduct thorough investigations into the associated risks. This article provides a comprehensive review and discussion of the available data pertaining to adverse reactions and toxicology associated with FDA-approved ASO drugs for DMD. Furthermore, it offers insights into the emerging category of peptide-conjugated ASO drugs those are clinical and preclinical trials, shedding light on their potential benefits and challenges.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Melissa Kohut
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Ratajczyk EJ, Šulc P, Turberfield AJ, Doye JPK, Louis AA. Coarse-grained modeling of DNA-RNA hybrids. J Chem Phys 2024; 160:115101. [PMID: 38497475 DOI: 10.1063/5.0199558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
Collapse
Affiliation(s)
- Eryk J Ratajczyk
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
3
|
Haque US, Yokota T. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide. Cells 2023; 12:2395. [PMID: 37830609 PMCID: PMC10572411 DOI: 10.3390/cells12192395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strategy for the treatment of human disorders. Charge-neutral PMOs have promising biological and pharmacological properties for antisense applications. Despite their great potential, the efficient delivery of these therapeutic agents to target cells remains a major obstacle to their widespread use. Cellular uptake of naked PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular uptake and intracellular delivery of oligonucleotide-based drugs. Among these, the DG9 peptide has been identified as a versatile CPP with remarkable potential for enhancing the delivery of ASO-based therapeutics due to its unique structural features. Notably, in the context of phosphorodiamidate morpholino oligomers (PMOs), DG9 has shown promise in enhancing delivery while maintaining a favorable toxicity profile. A few studies have highlighted the potential of DG9-conjugated PMOs in DMD (Duchenne Muscular Dystrophy) and SMA (Spinal Muscular Atrophy), displaying significant exon skipping/inclusion and functional improvements in animal models. The article provides an overview of a detailed understanding of the challenges that ASOs face prior to reaching their targets and continued advances in methods to improve their delivery to target sites and cellular uptake, focusing on DG9, which aims to harness ASOs' full potential in precision medicine.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
Wilton-Clark H, Yokota T. Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:49-59. [PMID: 36409820 DOI: 10.1080/14712598.2022.2150543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy is a lethal genetic disease which currently has no cure, and poor standard treatment options largely focused on symptom relief. The development of multiple biological and genetic therapies is underway across various stages of clinical progress which could markedly affect how DMD patients are treated in the future. AREAS COVERED The purpose of this review is to provide an introduction to the different therapeutic modalities currently being studied, as well as a brief description of their progress to date and relative advantages and disadvantages for the treatment of DMD. This review discusses exon skipping therapy, microdystrophin therapy, stop codon readthrough therapy, CRISPR-based gene editing, cell-based therapy, and utrophin upregulation. Secondary therapies addressing nonspecific symptoms of DMD were excluded. EXPERT OPINION Despite the vast potential held by gene replacement therapy options such as microdystrophin production and utrophin upregulation, safety risks inherent to the adeno-associated virus delivery vector might hamper the clinical viability of these approaches until further improvements can be made. Of the mutation-specific therapies, exon skipping therapy remains the most extensively validated and explored option, and the cell-based CAP-1002 therapy may prove to be a suitable adjunct therapy filling the urgent need for cardiac-specific therapies.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Abstract
Muscular dystrophies are a group of genetic disorders characterized by varying degrees of progressive muscle weakness and degeneration. They are clinically and genetically heterogeneous but share the common histological features of dystrophic muscle. There is currently no cure for muscular dystrophies, which is of particular concern for the more disabling and/or lethal forms of the disease. Through the years, several therapies have encouragingly been developed for muscular dystrophies and include genetic, cellular, and pharmacological approaches. In this chapter, we undertake a comprehensive exploration of muscular dystrophy therapeutics under current development. Our review includes antisense therapy, CRISPR, gene replacement, cell therapy, nonsense suppression, and disease-modifying small molecule compounds.
Collapse
|
7
|
Antisense and Gene Therapy Options for Duchenne Muscular Dystrophy Arising from Mutations in the N-Terminal Hotspot. Genes (Basel) 2022; 13:genes13020257. [PMID: 35205302 PMCID: PMC8872079 DOI: 10.3390/genes13020257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disease affecting children that is caused by a mutation in the gene encoding for dystrophin. In the absence of functional dystrophin, patients experience progressive muscle deterioration, leaving them wheelchair-bound by age 12 and with few patients surviving beyond their third decade of life as the disease advances and causes cardiac and respiratory difficulties. In recent years, an increasing number of antisense and gene therapies have been studied for the treatment of muscular dystrophy; however, few of these therapies focus on treating mutations arising in the N-terminal encoding region of the dystrophin gene. This review summarizes the current state of development of N-terminal antisense and gene therapies for DMD, mainly focusing on exon-skipping therapy for duplications and deletions, as well as microdystrophin therapy.
Collapse
|
8
|
Li Y, Li J, Wang J, Lynch D, Shen X, R. Corey D, Parekh D, Bhat B, Woo C, Cherry J, Napierala J, Napierala M. Targeting 3' and 5' untranslated regions with antisense oligonucleotides to stabilize frataxin mRNA and increase protein expression. Nucleic Acids Res 2021; 49:11560-11574. [PMID: 34718736 PMCID: PMC8599914 DOI: 10.1093/nar/gkab954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - David R Lynch
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Abramson Research Center, Room 502, Philadelphia, PA 19104, USA
| | - Xiulong Shen
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R. Corey
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darshan Parekh
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Caroline Woo
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Lim KRQ, Nguyen Q, Yokota T. Detection of Locked Nucleic Acid Gapmers from Mouse Muscle Samples Using ELISA. Methods Mol Biol 2021; 2176:233-239. [PMID: 32865795 DOI: 10.1007/978-1-0716-0771-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antisense oligonucleotide (ASO)-mediated therapy is promising for the treatment of a variety of genetic disorders, such as Duchenne muscular dystrophy. As more ASOs advance in therapeutic development and enter clinical trials, it becomes necessary to have a means of quantifying their amounts in biological samples post-treatment. This information will be valuable for evaluating the safety and pharmacokinetic profiles of ASOs, and in deciding how the efficacy of these drugs can be improved. Gapmers are a class of ASOs characterized by having a central DNA portion that is surrounded by chemically modified nucleotides on both ends. While relatively simple and accessible methods to quantify other ASOs such as phosphorodiamidate morpholino oligomers (PMOs) using enzyme-linked immunosorbent assay (ELISA)-based techniques are available and have been used for in vivo studies, no such method is available for gapmers to our knowledge. Here, we describe a sensitive ELISA protocol that can be used to quantify the levels of locked nucleic acid (LNA) gapmers in mouse muscle tissue.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Nguyen Q, Yokota T. Degradation of Toxic RNA in Myotonic Dystrophy Using Gapmer Antisense Oligonucleotides. Methods Mol Biol 2021; 2176:99-109. [PMID: 32865785 DOI: 10.1007/978-1-0716-0771-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myotonic dystrophy (DM) types 1 (DM1) and 2 (DM2) are caused by autosomal dominant gain-of-function RNA which are, in turn, created by the expansion of repeat sequences in the DMPK and ZNF9 genes, respectively. The expansions are highly unstable and biased for further expansion in somatic cells and across generations. Despite the different genes involved, DM1 and DM2 share several clinical features due to having the similar underlying mechanism of repetitive RNA-mediated toxicity. Both disorders manifest as multisystemic conditions with features including myotonia, cataract development, and abnormalities in cardiac conduction. At present, there is no cure for DM and treatments mostly aim at symptom management. Among the therapeutics being developed, antisense therapy using gapmers is one of the most promising. Compared to other antisense oligonucleotides, gapmers maintain the ability to induce RNase H cleavage while having enhanced target binding affinity and nuclease resistance. This chapter will consolidate the different strategies studied thus far to develop a treatment for DM1 through the targeting of toxic repetitive RNA using gapmers.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA with 200 nucleotides or longer that are not translated into protein. lncRNAs are highly abundant; a study estimates that at least four times more lncRNAs are typically present than coding RNAs in humans. However, function of more than 95% of human lncRNAs are still unknown. Synthetic antisense oligonucleotides called gapmers are powerful tools for lncRNA loss-of-function studies. Gapmers contain a central DNA part, which activates RNase H-mediated RNA degradation, flanked by modified oligonucleotides, such as 2'-O-methyl RNA (2'OMe), 2'-O-methoxyethyl RNA (2'MOE), constrained ethyl nucleosides (cEt), and locked nucleic acids (LNAs). In contrast to siRNA or RNAi-based methods, antisense oligonucleotide gapmer-based knockdown is often more effective against nuclear-localized lncRNA targets, since RNase H is mainly localized in nuclei. As such, gapmers are also potentially a powerful tool for therapeutics targeting lncRNAs in various diseases, including cancer, cardiovascular diseases, lung fibrosis, and neurological/neuromuscular diseases. This chapter will discuss the development and applications of gapmers for lncRNA loss-of-function studies and tips to design effective antisense oligonucleotides.
Collapse
|
12
|
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol 2021; 12:642858. [PMID: 33776777 PMCID: PMC7996372 DOI: 10.3389/fphar.2021.642858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive, asymmetric muscle weakness at the face, shoulders, and upper limbs, which spreads to the lower body with age. It is the third most common inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound, and some present with extramuscular manifestations. FSHD is caused by aberrant expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the expression of DUX4 or the activity of its toxic protein product. In this article, we review how genetic approaches such as those based on oligonucleotide and genome editing technologies have been developed to achieve these goals. We also outline the challenges these therapies are facing on the road to translation, and discuss possible solutions and future directions.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
13
|
Abstract
Viltolarsen (Viltepso® in Japan) is a phosphorodiamidate morpholino antisense oligonucleotide being developed by Nippon Shinyaku, in collaboration with the National Center of Neurology and Psychiatry (NCNP), for the treatment of Duchenne muscular dystrophy (DMD). Viltolarsen binds to exon 53 of the dystrophin mRNA precursor and restores the amino acid open-reading frame by skipping exon 53, resulting in the production of a shortened dystrophin protein that contains essential functional portions. In March 2020, intravenous viltolarsen received its first global approval in Japan for the treatment of DMD in patients with confirmed deletion of the dystrophin gene that is amenable to exon 53 skipping. Viltolarsen is under regulatory review in the USA and clinical trials continue in the USA, Canada and globally. This article summarizes the milestones in the development of viltolarsen leading to the first approval for DMD.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
14
|
Sasaki E, Hayashi Y, Kimura Y, Sashida S, Hamano N, Nirasawa K, Hamada K, Katagiri F, Kikkawa Y, Sakai T, Yoshida A, Kawada M, Hirashima SI, Miura T, Endo-Takahashi Y, Nomizu M, Negishi Y. Alpha-dystroglycan binding peptide A2G80-modified stealth liposomes as a muscle-targeting carrier for Duchenne muscular dystrophy. J Control Release 2021; 329:1037-1045. [PMID: 33080271 DOI: 10.1016/j.jconrel.2020.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Safe and efficient gene therapy for the treatment of Duchenne muscular dystrophy (DMD), a genetic disorder, is required. For this, the muscle-targeting delivery system of genes and nucleic acids is ideal. In this study, we focused on the A2G80 peptide, which has an affinity for α-dystroglycan expressed on muscle cell membranes, as a muscle targeted nanocarrier for DMD and developed A2G80-modified liposomes. We also prepared A2G80-modified liposomes coated with long- and short-chain PEG, called A2G80-LSP-Lip, to improve the blood circulation of liposomes using microfluidics. The liposomes had a particle size of approximately 80 nm. A2G80-LSP-Lip showed an affinity for the muscle tissue section of mice by overlay assay. When the liposomes were administered to DMD model mice (mdx mice) via the tail vein, A2G80-LSP-Lip accumulated efficiently in muscle tissue compared to control liposomes. These results suggest that A2G80-LSP-Lip can function as a muscle-targeting liposome for DMD via systemic administration, and may be a useful tool for DMD treatment.
Collapse
Affiliation(s)
- Eri Sasaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshihiro Hayashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuka Kimura
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sanae Sashida
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takaaki Sakai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Yoshida
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Kawada
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Ichi Hirashima
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
15
|
Lim KRQ, Maruyama R, Echigoya Y, Nguyen Q, Zhang A, Khawaja H, Sen Chandra S, Jones T, Jones P, Chen YW, Yokota T. Inhibition of DUX4 expression with antisense LNA gapmers as a therapy for facioscapulohumeral muscular dystrophy. Proc Natl Acad Sci U S A 2020; 117:16509-16515. [PMID: 32601200 PMCID: PMC7368245 DOI: 10.1073/pnas.1909649117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), characterized by progressive muscle weakness and deterioration, is genetically linked to aberrant expression of DUX4 in muscle. DUX4, in its full-length form, is cytotoxic in nongermline tissues. Here, we designed locked nucleic acid (LNA) gapmer antisense oligonucleotides (AOs) to knock down DUX4 in immortalized FSHD myoblasts and the FLExDUX4 FSHD mouse model. Using a screening method capable of reliably evaluating the knockdown efficiency of LNA gapmers against endogenous DUX4 messenger RNA in vitro, we demonstrate that several designed LNA gapmers selectively and effectively reduced DUX4 expression with nearly complete knockdown. We also found potential functional benefits of AOs on muscle fusion and structure in vitro. Finally, we show that one of the LNA gapmers was taken up and induced effective silencing of DUX4 upon local treatment in vivo. The LNA gapmers developed here will help facilitate the development of FSHD therapies.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010
- Department of Integrative Systems Biology, George Washington University, Washington, DC 20052
| | - Hunain Khawaja
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010
- Department of Integrative Systems Biology, George Washington University, Washington, DC 20052
| | - Sreetama Sen Chandra
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010
- Department of Integrative Systems Biology, George Washington University, Washington, DC 20052
| | - Takako Jones
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, NV 89557-0318
| | - Peter Jones
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, NV 89557-0318
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010;
- Department of Genomics and Precision Medicine, School of Medicine and Health Science, George Washington University, Washington, DC 20052
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
16
|
Vicencio E, Beltrán S, Labrador L, Manque P, Nassif M, Woehlbier U. Implications of Selective Autophagy Dysfunction for ALS Pathology. Cells 2020; 9:cells9020381. [PMID: 32046060 PMCID: PMC7072226 DOI: 10.3390/cells9020381] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder that progressively affects motor neurons in the brain and spinal cord. Due to the biological complexity of the disease, its etiology remains unknown. Several cellular mechanisms involved in the neurodegenerative process in ALS have been found, including the loss of RNA and protein homeostasis, as well as mitochondrial dysfunction. Insoluble protein aggregates, damaged mitochondria, and stress granules, which contain RNA and protein components, are recognized and degraded by the autophagy machinery in a process known as selective autophagy. Autophagy is a highly dynamic process whose dysregulation has now been associated with neurodegenerative diseases, including ALS, by numerous studies. In ALS, the autophagy process has been found deregulated in both familial and sporadic cases of the disease. Likewise, mutations in genes coding for proteins involved in the autophagy machinery have been reported in ALS patients, including selective autophagy receptors. In this review, we focus on the role of selective autophagy in ALS pathology.
Collapse
Affiliation(s)
- Emiliano Vicencio
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Sebastián Beltrán
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Luis Labrador
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| |
Collapse
|
17
|
Goodkey K, Aslesh T, Maruyama R, Yokota T. Nusinersen in the Treatment of Spinal Muscular Atrophy. Methods Mol Biol 2019; 1828:69-76. [PMID: 30171535 DOI: 10.1007/978-1-4939-8651-4_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Spinal muscular atrophy (SMA) is one of the most common genetic causes of infantile death arising due to mutations in the SMN1 gene and the subsequent loss of motor neurons. With the discovery of the intronic splicing silencer N1 (ISS-N1) as a potential target for antisense therapy, several antisense oligonucleotides (ASOs) are being developed to include exon 7 in the final mRNA transcript of the SMN2 gene and thereby increasing the production of spinal motor neuron (SMN) proteins. Nusinersen (spinraza), a modified 2'-O-methoxyethyl (MOE) antisense oligonucleotide is the first drug to be approved by Food and Drug Agency (FDA) in December of 2016. Here we briefly review the pharmacological relevance of the drug, clinical trials, toxicity, and future directions following the approval of nusinersen.
Collapse
Affiliation(s)
- Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tejal Aslesh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion. Methods Mol Biol 2019; 1828:79-90. [PMID: 30171536 DOI: 10.1007/978-1-4939-8651-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antisense-mediated exon skipping and exon inclusion have proven to be powerful tools for treating neuromuscular diseases. The approval of Exondys 51 (eteplirsen) and Spinraza (nusinersen) for the treatment of patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) was the most noteworthy accomplishment in 2016. Exon skipping uses short DNA-like molecules called antisense oligonucleotides (AONs) to correct the disrupted reading frame, allowing the production of functional quasi-dystrophin proteins, and ameliorate the progression of the disease. Exon inclusion for SMA employs an AON targeting an intronic splice silencer site to include an exon which is otherwise spliced out. Recently, these strategies have also been explored in many other genetic disorders, including dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy; MM, limb-girdle muscular dystrophy type 2B; LGMD2B, and distal myopathy with anterior tibial onset; DMAT), laminin α2 chain (merosin)-deficient congenital muscular dystrophy (MDC1A), sarcoglycanopathy (e.g., limb-girdle muscular dystrophy type 2C; LGMD2C), and Fukuyama congenital muscular dystrophy (FCMD). A major challenge in exon skipping and exon inclusion is the difficulty in designing effective AONs. The mechanism of mRNA splicing is highly complex, and the efficacy of AONs is often unpredictable. We will discuss the design of effective AONs for exon skipping and exon inclusion in this chapter.
Collapse
|
19
|
Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression. Methods Mol Biol 2019; 1828:141-150. [PMID: 30171539 DOI: 10.1007/978-1-4939-8651-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach for the treatment of various genetic diseases and a therapy which has gained significant traction in recent years following FDA approval of new antisense-based drugs. Exon skipping for Duchenne muscular dystrophy (DMD) works by modulating dystrophin pre-mRNA splicing, preventing incorporation of frame-disrupting exons into the final mRNA product while maintaining the open reading frame, to produce a shortened-yet-functional protein as seen in milder Becker muscular dystrophy (BMD) patients. Exons 45-55 skipping in dystrophin is potentially applicable to approximately 47% of DMD patients because many mutations occur within this "mutation hotspot." In addition, patients naturally harboring a dystrophin exons 45-55 in-frame deletion mutation have an asymptomatic or exceptionally mild phenotype compared to shorter in-frame deletion mutations in this region. As such, exons 45-55 skipping could transform the DMD phenotype into an asymptomatic or very mild BMD phenotype and rescue nearly a half of DMD patients. In addition, this strategy is potentially applicable to some BMD patients as well, who have in-frame deletion mutations in this region. As the degree of exon skipping correlates with therapeutic outcomes, reliable measurements of exon skipping efficiencies are essential to the development of novel antisense-mediated exon skipping therapeutics. In the case of DMD, researchers have often relied upon human muscle fibers obtained from muscle biopsies for testing; however, this method is highly invasive and patient myofibers can display limited proliferative ability. To overcome these challenges, researchers can generate myofibers from patient fibroblast cells by transducing the cells with a viral vector containing MyoD, a myogenic regulatory factor. Here, we describe a methodology for assessing dystrophin exons 45-55 multiple skipping efficiency using antisense oligonucleotides in human muscle cells derived from DMD patient fibroblast cells.
Collapse
|
20
|
Son HW, Yokota T. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy. Methods Mol Biol 2019; 1828:57-68. [PMID: 30171534 DOI: 10.1007/978-1-4939-8651-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a mutation in SMN1 that stops production of SMN (survival of motor neuron) protein. Insufficient levels of SMN results in the loss of motor neurons, which causes muscle weakness, respiratory distress, and paralysis. A nearly identical gene (SMN2) contains a C-to-T transition which excludes exon 7 from 90% of the mature mRNA transcripts, leading to unstable proteins which are targeted for degradation. Although SMN2 cannot fully compensate for a loss of SMN1 due to only 10% functional mRNA produced, the discovery of the intronic splicing silencer (ISS-N1) opened a doorway for therapy. By blocking its function with antisense oligonucleotides manipulated for high specificity and efficiency, exon 7 can be included to produce full-length mRNA, which then compensates for the loss of SMN1. Nusinersen (Spinraza), the first FDA-approved antisense oligonucleotide drug targeting SMA, was designed based on this concept and clinical studies have demonstrated a dramatic improvement in patients. Novel chemistries including phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNAs), as well as peptide conjugates such as Pip that facilitate accurate targeting to the central nervous system, are explored to increase the efficiency of exon 7 inclusion in the appropriate tissues to ameliorate the SMA phenotype. Due to the rapid advancement of treatments for SMA following the discovery of ISS-N1, the future of SMA treatment is highly promising.
Collapse
Affiliation(s)
- Hae-Won Son
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Touznik A, Maruyama R, Yokota T. In Vitro Evaluation of Antisense-Mediated Exon Inclusion for Spinal Muscular Atrophy. Methods Mol Biol 2019; 1828:439-454. [PMID: 30171558 DOI: 10.1007/978-1-4939-8651-4_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA), the most common gentic cause of infantile death caused by mutations in the SMN1 gene, presents a unique case in the field of splice modulation therapy, where a gene (or lack of) is responsible for causing the disease phenotype but treatment is not focused around it. Antisense therapy targeting SMN2 which leads to SMN protein expression has been at the forefront of research when it comes to developing a feasible therapy for treating SMA. Recent FDA approval of an antisense-based drug with the 2'-methoxyethoxy (2'MOE) chemistry, called nusinersen (Spinraza), brought antisense drugs into the spotlight. The 2'MOE, although effective, has weaknesses such as the inability to cross the blood-brain barrier and the high cost of treatment. This propelled the research community to investigate new chemistries of antisense oligonucleotides (ASOs) that may be better in both treatment and cost efficiency. Here we describe two types of ASOs, phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNA)-DNA mixmers, being investigated as potential treatments for SMA, and methods used to test their efficacy, including quantitative RT-PCR, Western blotting, and immunofluorescence staining to detect SMN in nuclear gems/Cajal bodies, in type I SMA patient fibroblast cell lines.
Collapse
Affiliation(s)
- Aleksander Touznik
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Nguyen Q, Yokota T. Antisense oligonucleotides for the treatment of cardiomyopathy in Duchenne muscular dystrophy. Am J Transl Res 2019; 11:1202-1218. [PMID: 30972156 PMCID: PMC6456507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive fatal neuromuscular disorder characterized by progressive muscle degeneration which affects one in 3500-5000 males born worldwide. DMD is caused by loss-of-function mutations in the dystrophin (DMD) gene encoding for dystrophin, a cytoskeletal protein that supports the structural integrity of myofibers during cycles of muscle contraction and relaxation. DMD patients do not only experience skeletal muscle deterioration but also severe cardiomyopathy, which is recognized as the current leading cause of death for the disease. Among the therapies being developed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising approaches. AOs effectively restore dystrophin expression in skeletal muscles; however, they are highly inefficient in the heart due to endosomal entrapment. Improving skeletal muscle function without restoring dystrophin expression in cardiac tissue may exacerbate cardiomyopathy due to increased voluntary activity. This review consolidates the preclinical antisense approaches to improve dystrophin restoration, with a special focus on the heart.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta8812-112 St., Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta8812-112 St., Edmonton, AB T6G 2H7, Canada
- The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair8812-112 St., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
23
|
Lee JJA, Maruyama R, Duddy W, Sakurai H, Yokota T. Identification of Novel Antisense-Mediated Exon Skipping Targets in DYSF for Therapeutic Treatment of Dysferlinopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:596-604. [PMID: 30439648 PMCID: PMC6234522 DOI: 10.1016/j.omtn.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Dysferlinopathy is a progressive myopathy caused by mutations in the dysferlin (DYSF) gene. Dysferlin protein plays a major role in plasma-membrane resealing. Some patients with DYSF deletion mutations exhibit mild symptoms, suggesting some regions of DYSF can be removed without significantly impacting protein function. Antisense-mediated exon-skipping therapy uses synthetic molecules called antisense oligonucleotides to modulate splicing, allowing exons harboring or near genetic mutations to be removed and the open reading frame corrected. Previous studies have focused on DYSF exon 32 skipping as a potential therapeutic approach, based on the association of a mild phenotype with the in-frame deletion of exon 32. To date, no other DYSF exon-skipping targets have been identified, and the relationship between DYSF exon deletion pattern and protein function remains largely uncharacterized. In this study, we utilized a membrane-wounding assay to evaluate the ability of plasmid constructs carrying mutant DYSF, as well as antisense oligonucleotides, to rescue membrane resealing in patient cells. We report that multi-exon skipping of DYSF exons 26–27 and 28–29 rescues plasma-membrane resealing. Successful translation of these findings into the development of clinical antisense drugs would establish new therapeutic approaches that would be applicable to ∼5%–7% (exons 26–27 skipping) and ∼8% (exons 28–29 skipping) of dysferlinopathy patients worldwide.
Collapse
Affiliation(s)
- Joshua J A Lee
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, United Kingdom
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada; The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
24
|
Correction of a Splicing Mutation Affecting an Unverricht-Lundborg Disease Patient by Antisense Therapy. Genes (Basel) 2018; 9:genes9090455. [PMID: 30208654 PMCID: PMC6162617 DOI: 10.3390/genes9090455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023] Open
Abstract
Unverricht-Lundborg disease (ULD) is a common form of progressive myoclonic epilepsy caused by mutations in the cystatin B gene (CSTB) that encodes an inhibitor of several lysosomal cathepsins. Presently, only pharmacological treatment and psychosocial support are available for ULD patients. To overcome the pathogenic effect of the ULD splicing mutation c.66G>A (exon 1), we investigated whether an antisense oligonucleotide therapeutic strategy could correct the defect in patient cells. A specific locked nucleic acid (LNA) antisense oligonucleotide was designed to block a cryptic 5′ss in intron 1. Overall, this approach allowed the restoration of the normal splicing pattern. Furthermore, the recovery was both sequence and dose-specific. In general, this work provides a proof of principle on the correction of a CSTB gene defect causing ULD through a mutation-specific antisense therapy. It adds evidence to the feasibility of this approach, joining the many studies that are paving the way for translating antisense technology into the clinical practice. The insights detailed herein make mutation-based therapy a clear candidate for personalized treatment of ULD patients, encouraging similar investigations into other genetic diseases.
Collapse
|
25
|
Ramalho TC, de Castro AA, Tavares TS, Silva MC, Silva DR, Cesar PH, Santos LA, da Cunha EFF, Nepovimova E, Kuca K. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: Current Status and future expectations. Prog Neurobiol 2018; 169:135-157. [PMID: 29981392 DOI: 10.1016/j.pneurobio.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
Several rare or orphan diseases have been characterized that singly affect low numbers of people, but cumulatively reach ∼6%-10% of the population in Europe and in the United States. Human genetics has shown to be broadly effective when evaluating subjacent genetic defects such as orphan genetic diseases, but on the other hand, a modest progress has been achieved toward comprehending the molecular pathologies and designing new therapies. Chemical genetics, placed at the interface of chemistry and genetics, could be employed to understand the molecular mechanisms of subjacent illnesses and for the discovery of new remediation processes. This review debates current progress in chemical genetics, and how a variety of compounds and reaction mechanisms can be used to study and ultimately treat rare genetic diseases. We focus here on a study involving Amyotrophic lateral sclerosis (ALS), Duchenne Muscular Dystrophy (DMD), Spinal muscular atrophy (SMA) and Familial Amyloid Polyneuropathy (FAP), approaching different treatment methods and the reaction mechanisms of several compounds, trying to elucidate new routes capable of assisting in the treatment profile.
Collapse
Affiliation(s)
- Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | - Tássia S Tavares
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Maria C Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Daniela R Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Pedro H Cesar
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Lucas A Santos
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
26
|
Abstract
During the past 10 years, antisense oligonucleotide-mediated exon skipping and splice modulation have proven to be powerful tools for correction of mRNA splicing in genetic diseases. In 2016, the US Food and Drug Administration (FDA)-approved Exondys 51 (eteplirsen) and Spinraza (nusinersen), the first exon skipping and exon inclusion drugs, to treat patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), respectively. The exon skipping of DMD mRNA aims to restore the disrupted reading frame using antisense oligonucleotides (AONs), allowing the production of truncated but partly functional dystrophin proteins, and slow down the progression of the disease. This approach has also been explored in several other genetic disorders, including laminin α2 chain-deficient congenital muscular dystrophy, dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy and limb-girdle muscular dystrophy type 2B), sarcoglycanopathy (limb-girdle muscular dystrophy type 2C), and Fukuyama congenital muscular dystrophy. Antisense-mediated exon skipping is also a powerful tool to examine the function of genes and exons. A significant challenge in exon skipping is how to design effective AONs. The mechanism of mRNA splicing is highly complex with many factors involved. The selection of target sites, the length of AONs, the AON chemistry, and the melting temperature versus the RNA strand play important roles. A cocktail of AONs can be employed to skip multiples exons. In this chapter, we discuss the design of effective AONs for exon skipping.
Collapse
|
27
|
Lee J, Echigoya Y, Duddy W, Saito T, Aoki Y, Takeda S, Yokota T. Antisense PMO cocktails effectively skip dystrophin exons 45-55 in myotubes transdifferentiated from DMD patient fibroblasts. PLoS One 2018; 13:e0197084. [PMID: 29771942 PMCID: PMC5957359 DOI: 10.1371/journal.pone.0197084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Antisense-mediated exon skipping has made significant progress as a therapeutic platform in recent years, especially in the case of Duchenne muscular dystrophy (DMD). Despite FDA approval of eteplirsen-the first-ever antisense drug clinically marketed for DMD-exon skipping therapy still faces the significant hurdles of limited applicability and unknown truncated protein function. In-frame exon skipping of dystrophin exons 45-55 represents a significant approach to treating DMD, as a large proportion of patients harbor mutations within this "hotspot" region. Additionally, patients harboring dystrophin exons 45-55 deletion mutations are reported to have exceptionally mild to asymptomatic phenotypes. Here, we demonstrate that a cocktail of phosphorodiamidate morpholino oligomers can effectively skip dystrophin exons 45-55 in vitro in myotubes transdifferentiated from DMD patient fibroblast cells. This is the first report of substantive exons 45-55 skipping in DMD patient cells. These findings help validate the use of transdifferentiated patient fibroblast cells as a suitable cell model for dystrophin exon skipping assays and further emphasize the feasibility of dystrophin exons 45-55 skipping in patients.
Collapse
Affiliation(s)
- Joshua Lee
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yusuke Echigoya
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, United Kingdom
| | - Takashi Saito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
28
|
Maruyama R, Touznik A, Yokota T. Evaluation of Exon Inclusion Induced by Splice Switching Antisense Oligonucleotides in SMA Patient Fibroblasts. J Vis Exp 2018. [PMID: 29806836 DOI: 10.3791/57530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA), a lethal neurological disease caused by the loss of SMN1, presents a unique case in the field of antisense oligonucleotide (AON)-mediated therapy. While SMN1 mutations are responsible for the disease, AONs targeting intronic splice silencer (ISS) sites in SMN2, including FDA-approved nusinersen, have been shown to restore SMN expression and ameliorate the symptoms. Currently, many studies involving AON therapy for SMA focus on investigating novel AON chemistries targeting SMN2 that may be more effective and less toxic than nusinersen. Here, we describe a protocol for in vitro evaluation of exon inclusion using lipotransfection of AONs followed by reverse transcription polymerase chain reaction (RT-PCR), quantitative polymerase chain reaction (qPCR), and Western blotting. This method can be employed for various types of AON chemistries. Using this method, we demonstrate that AONs composed of alternating locked nucleic acids (LNAs) and DNA nucleotides (LNA/DNA mixmers) lead to efficient SMN2 exon inclusion and restoration of SMN protein at a very low concentration, and therefore, LNA/DNA mixmer-based antisense oligonucleotides may be an attractive therapeutic strategy to treat splicing defects caused by genetic diseases. The in vitro evaluation method described here is fast, easy, and sensitive enough for the testing of various novel AONs.
Collapse
Affiliation(s)
- Rika Maruyama
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry;
| | - Aleksander Touznik
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry; Muscular Dystrophy Canada Research Chair, Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry;
| |
Collapse
|
29
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Dong X, Gao X, Dai Y, Ran N, Yin H. Serum exosomes can restore cellular function in vitro and be used for diagnosis in dysferlinopathy. Am J Cancer Res 2018; 8:1243-1255. [PMID: 29507617 PMCID: PMC5835933 DOI: 10.7150/thno.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Purpose: It is challenging to deliver the full-length dysferlin gene or protein to restore cellular functions of dysferlin-deficient (DYSF-/-) myofibres in dysferlinopathy, a disease caused by the absence of dysferlin, which is currently without effective treatment. Exosomes, efficient membranous nanoscale carriers of biological cargoes, could be useful. Experimental design: Myotube- and human serum-derived exosomes were investigated for their capabilities of restoring dysferlin protein and cellular functions in murine and human DYSF-/- cells. Moreover, dysferlinopathic patient serum- and urine-derived exosomes were assessed for their abilities as diagnostic tools for dysferlinopathy. Results: Here we show that exosomes from dysferlin-expressing myotubes carry abundant dysferlin and enable transfer of full-length dysferlin protein to DYSF-/- myotubes. Exogenous dysferlin correctly localizes on DYSF-/- myotube membranes, enabling membrane resealing in response to injury. Human serum exosomes also carry dysferlin protein and improve membrane repair capabilities of human DYSF-/- myotubes irrespective of mutations. Lack of dysferlin in dysferlinopathic patient serum and urine exosomes enables differentiation between healthy controls and dysferlinopathic patients. Conclusions: Our findings provide evidence that exosomes are efficient carriers of dysferlin and can be employed for the treatment and non-invasive diagnosis of dysferlinopathy.
Collapse
|
31
|
Aslesh T, Maruyama R, Yokota T. Skipping Multiple Exons to Treat DMD-Promises and Challenges. Biomedicines 2018; 6:E1. [PMID: 29301272 PMCID: PMC5874658 DOI: 10.3390/biomedicines6010001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disorder caused by mutations in the DMD gene. Antisense-mediated exon-skipping is a promising therapeutic strategy that makes use of synthetic nucleic acids to skip frame-disrupting exon(s) and allows for short but functional protein expression by restoring the reading frame. In 2016, the U.S. Food and Drug Administration (FDA) approved eteplirsen, which skips DMD exon 51 and is applicable to approximately 13% of DMD patients. Multiple exon skipping, which is theoretically applicable to 80-90% of DMD patients in total, have been demonstrated in animal models, including dystrophic mice and dogs, using cocktail antisense oligonucleotides (AOs). Although promising, current drug approval systems pose challenges for the use of a cocktail AO. For example, both exons 6 and 8 need to be skipped to restore the reading frame in dystrophic dogs. Therefore, the cocktail of AOs targeting these exons has a combined therapeutic effect and each AO does not have a therapeutic effect by itself. The current drug approval system is not designed to evaluate such circumstances, which are completely different from cocktail drug approaches in other fields. Significant changes are needed in the drug approval process to promote the cocktail AO approach.
Collapse
Affiliation(s)
- Tejal Aslesh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
32
|
Maruyama R, Yokota T. Creation of DMD Muscle Cell Model Using CRISPR-Cas9 Genome Editing to Test the Efficacy of Antisense-Mediated Exon Skipping. Methods Mol Biol 2018; 1828:165-171. [PMID: 30171541 DOI: 10.1007/978-1-4939-8651-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disorder caused by mutations in the DMD gene. Antisense-mediated exon skipping is a promising strategy to treat DMD. The approval of Exondys 51 (eteplirsen) targeting exon 51 was the most noteworthy accomplishment in 2016. To evaluate and optimize the sequence of antisense oligonucleotides (AOs), muscle cell lines with DMD mutations are useful tools. However, there are only several immortalized muscle cell lines with DMD mutations available that can be used to test the efficacy of exon skipping in vitro. In addition, an invasive muscle biopsy is required to obtain muscle cells from patients. Furthermore, many DMD mutations are very rare and it is hard to find a patient with a specific mutation for muscle biopsy in many cases. Here, we describe a novel approach to create an immortalized muscle cell line with a DMD deletion mutation using the human rhabdomyosarcoma (RD) cell line and the CRISPR/Cas9 system that can be used to test the efficacy of exon skipping.
Collapse
Affiliation(s)
- Rika Maruyama
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
33
|
Abstract
Since its discovery in 1977, much has been known about RNA splicing and how it plays a central role in human development, function, and, notably, disease. Defects in RNA splicing account for at least 10% of all genetic disorders, with the number expected to increase as more information is uncovered on the contribution of noncoding genomic regions to disease. Splice modulation through the use of antisense oligonucleotides (AOs) has emerged as a promising avenue for the treatment of these disorders. In fact, two splice-switching AOs have recently obtained approval from the US Food and Drug Administration: eteplirsen (Exondys 51) for Duchenne muscular dystrophy, and nusinersen (Spinraza) for spinal muscular atrophy. These work by exon skipping and exon inclusion, respectively. In this chapter, we discuss the early development of AO-based splice modulation therapy-its invention, first applications, and its evolution into the approach we are now familiar with. We give a more extensive history of exon skipping in particular, as it is the splice modulation approach given the most focus in this book.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
34
|
Lim KRQ, Yokota T. Quantitative Evaluation of Exon Skipping in Immortalized Muscle Cells In Vitro. Methods Mol Biol 2018; 1828:127-139. [PMID: 30171538 DOI: 10.1007/978-1-4939-8651-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exon skipping through the use of antisense oligonucleotides (AOs) is currently one of the most promising approaches for treating Duchenne muscular dystrophy (DMD). While we now have a number of AO drug candidates in clinical trials, we are still faced with issues of poor or controversial efficacy in some of these drugs. This is the case with eteplirsen, an exon 51-skipping AO that is the first and only FDA-approved drug for DMD to date. Effective procedures must, therefore, be set up for the in vitro screening of potential AOs for DMD treatment. Here, we describe one such procedure using immortalized DMD patient-derived muscle cells. Aside from allowing for the quantitative evaluation of candidate AOs based on their exon skipping efficiency and dystrophin protein rescue levels, these immortalized cells are stable, pure, easy to grow, and not subject to confounding by senescence-related issues. This procedure enables a more reliable screening of AOs prior to their entry in clinical trials and greatly facilitates the search for more efficacious candidate exon skipping AOs for DMD treatment.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
35
|
An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods Mol Biol 2018; 1828:31-55. [PMID: 30171533 DOI: 10.1007/978-1-4939-8651-4_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). Eteplirsen (brand name Exondys 51), is the first approved antisense therapy for DMD in the USA, and provides a treatment option for ~14% of all DMD patients, who are amenable to exon 51 skipping. Eteplirsen is granted accelerated approval and marketing authorization by the US Food and Drug Administration (FDA), on the condition that additional postapproval trials show clinical benefit. Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
Collapse
|
36
|
Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy. J Pers Med 2017; 7:jpm7040013. [PMID: 29035327 PMCID: PMC5748625 DOI: 10.3390/jpm7040013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA) conditionally approved the first AO-based drug, eteplirsen (Exondys 51), developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.
Collapse
|
37
|
Echigoya Y, Lim KRQ, Trieu N, Bao B, Miskew Nichols B, Vila MC, Novak JS, Hara Y, Lee J, Touznik A, Mamchaoui K, Aoki Y, Takeda S, Nagaraju K, Mouly V, Maruyama R, Duddy W, Yokota T. Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy. Mol Ther 2017; 25:2561-2572. [PMID: 28865998 DOI: 10.1016/j.ymthe.2017.07.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nhu Trieu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bo Bao
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bailey Miskew Nichols
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Maria Candida Vila
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Yuko Hara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Joshua Lee
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Aleksander Touznik
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kamel Mamchaoui
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-Binghamton University, Binghamton, NY 13902-6000, USA
| | - Vincent Mouly
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
38
|
Lim KRQ, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:533-545. [PMID: 28280301 PMCID: PMC5338848 DOI: 10.2147/dddt.s97635] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Duchenne muscular dystrophy is a fatal neuromuscular disorder affecting around one in 3,500–5,000 male births that is characterized by progressive muscular deterioration. It is inherited in an X-linked recessive fashion and is caused by loss-of-function mutations in the DMD gene coding for dystrophin, a cytoskeletal protein that stabilizes the plasma membrane of muscle fibers. In September 2016, the US Food and Drug Administration granted accelerated approval for eteplirsen (or Exondys 51), a drug that acts to promote dystrophin production by restoring the translational reading frame of DMD through specific skipping of exon 51 in defective gene variants. Eteplirsen is applicable for approximately 14% of patients with DMD mutations. This article extensively reviews and discusses the available information on eteplirsen to date, focusing on pharmacological, efficacy, safety, and tolerability data from preclinical and clinical trials. Issues faced by eteplirsen, particularly those relating to its efficacy, will be identified. Finally, the place of eteplirsen and exon skipping as a general therapeutic strategy in Duchenne muscular dystrophy treatment will be discussed.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta; The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
39
|
Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Sci Rep 2016; 6:38371. [PMID: 27924830 PMCID: PMC5141435 DOI: 10.1038/srep38371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy, one of the most common lethal genetic disorders, is caused by mutations in the DMD gene and a lack of dystrophin protein. In most DMD patients and animal models, sporadic dystrophin-positive muscle fibres, called revertant fibres (RFs), are observed in otherwise dystrophin-negative backgrounds. RFs are thought to arise from skeletal muscle precursor cells and clonally expand with age due to the frequent regeneration of necrotic fibres. Here we examined the effects of genetic background on muscle regeneration and RF expansion by comparing dystrophin-deficient mdx mice on the C57BL/6 background (mdx-B6) with those on the DBA/2 background (mdx-DBA), which have a more severe phenotype. Interestingly, mdx-DBA muscles had significantly lower RF expansion than mdx-B6 in all age groups, including 2, 6, 12, and 18 months. The percentage of centrally nucleated fibres was also significantly lower in mdx-DBA mice compared to mdx-B6, indicating that less muscle regeneration occurs in mdx-DBA. Our study aligns with the model that RF expansion reflects the activity of precursor cells in skeletal muscles, and it serves as an index of muscle regeneration capacity.
Collapse
|
40
|
Robinson-Hamm JN, Gersbach CA. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 2016; 135:1029-40. [PMID: 27542949 PMCID: PMC5006996 DOI: 10.1007/s00439-016-1725-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.
Collapse
Affiliation(s)
- Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Antisense-mediated modulation of transcripts is a dynamic therapeutic field, especially for neuromuscular disorders. RECENT FINDINGS For three diseases, this approach has advanced to the clinical trial phase, that is Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy. In parallel, numerous proof-of-concept studies in cell and animal models have been reported for additional neuromuscular disorders. SUMMARY This review discusses the most notable advances in preclinical and clinical studies in the past year. For Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy trials are ongoing to assess safety and efficacy, while in parallel preclinical studies are being conducted to identify ways to improve efficiency and delivery. For other neuromuscular diseases, progress is made as well warranting future clinical trials. However, towards clinical trial readiness, it is important not only to optimize the therapy preclinically but to also develop the infrastructure that is needed to conduct trials.
Collapse
|
42
|
Miskew Nichols B, Aoki Y, Kuraoka M, Lee JJA, Takeda S, Yokota T. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy. J Vis Exp 2016. [PMID: 27285612 PMCID: PMC4927712 DOI: 10.3791/53776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented.
Collapse
Affiliation(s)
- Bailey Miskew Nichols
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Joshua J A Lee
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry;
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry;
| |
Collapse
|
43
|
Saffari M, Moghimi HR, Dass CR. Barriers to Liposomal Gene Delivery: from Application Site to the Target. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:3-17. [PMID: 28228799 PMCID: PMC5242347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.
Collapse
Affiliation(s)
- Mostafa Saffari
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Current Address: Department of Pharmaceutics, School of Pharmacy, Islamic Azad University, Tehran, Iran.
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,
| | - Crispin R Dass
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Australia
| |
Collapse
|
44
|
A roadmap for precision medicine in the epilepsies. Lancet Neurol 2015; 14:1219-28. [PMID: 26416172 PMCID: PMC4663979 DOI: 10.1016/s1474-4422(15)00199-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Technological advances have paved the way for accelerated genomic discovery and are bringing precision medicine clearly into view. Epilepsy research in particular is well suited to serve as a model for the development and deployment of targeted therapeutics in precision medicine because of the rapidly expanding genetic knowledge base in epilepsy, the availability of good in-vitro and in-vivo model systems to efficiently study the biological consequences of genetic mutations, the ability to turn these models into effective drug-screening platforms, and the establishment of collaborative research groups. Moving forward, it is crucial that these collaborations are strengthened, particularly through integrated research platforms, to provide robust analyses both for accurate personal genome analysis and gene and drug discovery. Similarly, the implementation of clinical trial networks will allow the expansion of patient sample populations with genetically defined epilepsy so that drug discovery can be translated into clinical practice.
Collapse
|
45
|
Saneyoshi H, Kondo K, Sagawa N, Ono A. Glutathione-triggered activation of the model of pro-oligonucleotide with benzyl protecting groups at the internucleotide linkage. Bioorg Med Chem Lett 2015; 26:622-625. [PMID: 26639763 DOI: 10.1016/j.bmcl.2015.11.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022]
Abstract
We have examined substituted benzyl protecting groups for the phosphodiester in oligodeoxyribonucleotides. Stability of the protecting groups in buffer and rates of deprotection by glutathione (GSH) were strongly influenced by benzyl ring substituents.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Kazuhiko Kondo
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Naoki Sagawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
46
|
Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem 2015; 7:1631-5. [PMID: 26423833 DOI: 10.4155/fmc.15.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
47
|
|
48
|
Harish P, Malerba A, Dickson G, Bachtarzi H. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy. Hum Gene Ther 2015; 26:286-92. [PMID: 25860803 DOI: 10.1089/hum.2015.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.
Collapse
Affiliation(s)
- Pradeep Harish
- 1School of Biological Sciences, Royal Holloway-University of London, Surrey, TW20 0EX, United Kingdom
| | - Alberto Malerba
- 1School of Biological Sciences, Royal Holloway-University of London, Surrey, TW20 0EX, United Kingdom
| | - George Dickson
- 1School of Biological Sciences, Royal Holloway-University of London, Surrey, TW20 0EX, United Kingdom
| | - Houria Bachtarzi
- 2Brighton Centre for Regenerative Medicine, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
49
|
Echigoya Y, Aoki Y, Miskew B, Panesar D, Touznik A, Nagata T, Tanihata J, Nakamura A, Nagaraju K, Yokota T. Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e225. [PMID: 25647512 PMCID: PMC4345310 DOI: 10.1038/mtna.2014.76] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/12/2014] [Indexed: 01/16/2023]
Abstract
Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45–55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges. Previously, we described the feasibility of exons 45–55 skipping with a cocktail of Vivo-Morpholinos in vivo; however, the long-term efficacy and safety of Vivo-Morpholinos remains to be determined. In this study, we examined the efficacy and toxicity of exons 45–55 skipping by intravenous injections of 6 mg/kg 10-Vivo-Morpholino cocktail (0.6 mg/kg each vPMO) every 2 weeks for 18 weeks to dystrophic exon-52 knockout (mdx52) mice. Systemic skipping of the entire exons 45–55 region was induced, and the Western blot analysis exhibited the restoration of 5–27% of normal levels of dystrophin protein in skeletal muscles, accompanied by improvements in histopathology and muscle strength. No obvious immune response and renal and hepatic toxicity were detected at the end-point of the treatment. We demonstrate our new regimen with the 10-Vivo-Morpholino cocktail is effective and safe for long-term repeated systemic administration in the dystrophic mouse model.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yoshitsugu Aoki
- 1] Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan [2] Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bailey Miskew
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dharminder Panesar
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aleksander Touznik
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tetsuya Nagata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Akinori Nakamura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington DC, USA
| | - Toshifumi Yokota
- 1] Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada [2] Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Hersh WH. Synthesis of dinucleoside acylphosphonites by phosphonodiamidite chemistry and investigation of phosphorus epimerization. Beilstein J Org Chem 2015; 11:184-91. [PMID: 25815068 PMCID: PMC4362088 DOI: 10.3762/bjoc.11.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/15/2015] [Indexed: 12/24/2022] Open
Abstract
The reaction of the diamidite, (iPr2N)2PH, with acyl chlorides proceeds with the loss of HCl to give the corresponding acyl diamidites, RC(O)P(N(iPr)2)2 (R = Me (7), Ph (9)), without the intervention of sodium to give a phosphorus anion. The structure of 9 was confirmed by single-crystal X-ray diffraction. The coupling of the diamidites 7 and 9 with 5'-O-DMTr-thymidine was carried out with N-methylimidazolium triflate as the activator to give the monoamidites 3'-O-(P(N(iPr)2)C(O)R)-5'-O-DMTr-thymidine, and further coupling with 3'-O-(tert-butyldimethylsilyl)thymidine was carried out with activation by pyridinium trifluoroacetate/N-methylimidazole. The new dinucleoside acylphosphonites could be further oxidized, hydrolyzed to the H-phosphonates, and sulfurized to give the known mixture of diastereomeric phosphorothioates. The goal of this work was the measurement of the barrier to inversion of the acylphosphonites, which was expected to be low by analogy to the low barrier found in acylphosphines. However, the barrier was found to be high as no epimerization was detected up to 150 °C, and consistent with this, density functional theory calculations give an inversion barrier of over 40 kcal/mol.
Collapse
Affiliation(s)
- William H Hersh
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY 11367-1597, USA
| |
Collapse
|