1
|
Yuan Y, Al Bulushi T, Sastry AV, Sancar C, Szubin R, Golden SS, Palsson BO. Machine learning reveals the transcriptional regulatory network and circadian dynamics of Synechococcus elongatus PCC 7942. Proc Natl Acad Sci U S A 2024; 121:e2410492121. [PMID: 39269777 PMCID: PMC11420160 DOI: 10.1073/pnas.2410492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Synechococcus elongatus is an important cyanobacterium that serves as a versatile and robust model for studying circadian biology and photosynthetic metabolism. Its transcriptional regulatory network (TRN) is of fundamental interest, as it orchestrates the cell's adaptation to the environment, including its response to sunlight. Despite the previous characterization of constituent parts of the S. elongatus TRN, a comprehensive layout of its topology remains to be established. Here, we decomposed a compendium of 300 high-quality RNA sequencing datasets of the model strain PCC 7942 using independent component analysis. We obtained 57 independently modulated gene sets, or iModulons, that explain 67% of the variance in the transcriptional response and 1) accurately reflect the activity of known transcriptional regulations, 2) capture functional components of photosynthesis, 3) provide hypotheses for regulon structures and functional annotations of poorly characterized genes, and 4) describe the transcriptional shifts under dynamic light conditions. This transcriptome-wide analysis of S. elongatus provides a quantitative reconstruction of the TRN and presents a knowledge base that can guide future investigations. Our systems-level analysis also provides a global TRN structure for S. elongatus PCC 7942.
Collapse
Affiliation(s)
- Yuan Yuan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Tahani Al Bulushi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Anand V. Sastry
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Cigdem Sancar
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Richard Szubin
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Susan S. Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Bernhard O. Palsson
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA92093
- Department of Pediatrics, University of California, San Diego, La Jolla, CA92093
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby2800, Denmark
| |
Collapse
|
2
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
3
|
Huang J, Jiang Q, Yang M, Dykes GF, Weetman SL, Xin W, He HL, Liu LN. Probing the Internal pH and Permeability of a Carboxysome Shell. Biomacromolecules 2022; 23:4339-4348. [PMID: 36054822 PMCID: PMC9554877 DOI: 10.1021/acs.biomac.2c00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The carboxysome is a protein-based nanoscale organelle
in cyanobacteria
and many proteobacteria, which encapsulates the key CO2-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)
and carbonic anhydrase (CA) within a polyhedral protein shell. The
intrinsic self-assembly and architectural features of carboxysomes
and the semipermeability of the protein shell provide the foundation
for the accumulation of CO2 within carboxysomes and enhanced
carboxylation. Here, we develop an approach to determine the interior
pH conditions and inorganic carbon accumulation within an α-carboxysome
shell derived from a chemoautotrophic proteobacterium Halothiobacillus neapolitanus and evaluate the shell
permeability. By incorporating a pH reporter, pHluorin2, within empty
α-carboxysome shells produced in Escherichia
coli, we probe the interior pH of the protein shells
with and without CA. Our in vivo and in vitro results demonstrate a lower interior pH of α-carboxysome shells
than the cytoplasmic pH and buffer pH, as well as the modulation of
the interior pH in response to changes in external environments, indicating
the shell permeability to bicarbonate ions and protons. We further
determine the saturated HCO3– concentration
of 15 mM within α-carboxysome shells and show the CA-mediated
increase in the interior CO2 level. Uncovering the interior
physiochemical microenvironment of carboxysomes is crucial for understanding
the mechanisms underlying carboxysomal shell permeability and enhancement
of Rubisco carboxylation within carboxysomes. Such fundamental knowledge
may inform reprogramming carboxysomes to improve metabolism and recruit
foreign enzymes for enhanced catalytical performance.
Collapse
Affiliation(s)
- Jiafeng Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.,School of Life Sciences, Central South University, Changsha 410017, China
| | - Qiuyao Jiang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.,Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Mengru Yang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Samantha L Weetman
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 271000, China
| | - Hai-Lun He
- School of Life Sciences, Central South University, Changsha 410017, China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Fuentes-Cabrera M, Sakkos JK, Ducat DC, Ziatdinov M. Investigating Carboxysome Morphology Dynamics with a Rotationally Invariant Variational Autoencoder. J Phys Chem A 2022; 126:5021-5030. [PMID: 35880991 DOI: 10.1021/acs.jpca.2c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carboxysomes are a class of bacterial microcompartments that form proteinaceous organelles within the cytoplasm of cyanobacteria and play a central role in photosynthetic metabolism by defining a cellular microenvironment permissive to CO2 fixation. Critical aspects of the assembly of the carboxysomes remain relatively unknown, especially with regard to the dynamics of this microcompartment. Progress in understanding carboxysome dynamics is impeded in part because analysis of the subtle changes in carboxysome morphology with microscopy remains a low-throughput and subjective process. Here we use deep learning techniques, specifically a Rotationally Invariant Variational Autoencoder (rVAE), to analyze fluorescence microscopy images of cyanobacteria bearing a carboxysome reporter and quantitatively evaluate how carboxysome shell remodelling impacts subtle trends in the morphology of the microcompartment over time. Toward this goal, we use a recently developed tool to control endogenous protein levels, including carboxysomal components, in the model cyanobacterium Synechococcous elongatus PCC 7942. By utilization of this system, proteins that compose the carboxysome can be tuned in real time as a method to examine carboxysome dynamics. We find that rVAEs are able to assist in the quantitative evaluation of changes in carboxysome numbers, shape, and size over time. We propose that rVAEs may be a useful tool to accelerate the analysis of carboxysome assembly and dynamics in response to genetic or environmental perturbation and may be more generally useful to probe regulatory processes involving a broader array of bacterial microcompartments.
Collapse
Affiliation(s)
- Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jonathan K Sakkos
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Abstract
Bacterial microcompartments (BMCs) confine a diverse array of metabolic reactions within a selectively permeable protein shell, allowing for specialized biochemistry that would be less efficient or altogether impossible without compartmentalization. BMCs play critical roles in carbon fixation, carbon source utilization, and pathogenesis. Despite their prevalence and importance in bacterial metabolism, little is known about BMC “homeostasis,” a term we use here to encompass BMC assembly, composition, size, copy-number, maintenance, turnover, positioning, and ultimately, function in the cell. The carbon-fixing carboxysome is one of the most well-studied BMCs with regard to mechanisms of self-assembly and subcellular organization. In this minireview, we focus on the only known BMC positioning system to date—the maintenance of carboxysome distribution (Mcd) system, which spatially organizes carboxysomes. We describe the two-component McdAB system and its proposed diffusion-ratchet mechanism for carboxysome positioning. We then discuss the prevalence of McdAB systems among carboxysome-containing bacteria and highlight recent evidence suggesting how liquid-liquid phase separation (LLPS) may play critical roles in carboxysome homeostasis. We end with an outline of future work on the carboxysome distribution system and a perspective on how other BMCs may be spatially regulated. We anticipate that a deeper understanding of BMC organization, including nontraditional homeostasis mechanisms involving LLPS and ATP-driven organization, is on the horizon.
Collapse
|
6
|
Cellular and Molecular Strategies in Cyanobacterial Survival-"In Memory of Prof. Dr. Wolfgang Lockau". Life (Basel) 2021; 11:life11020132. [PMID: 33572088 PMCID: PMC7915015 DOI: 10.3390/life11020132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
|