1
|
Au SX, Mohd Padzil A, Muhd Noor ND, Matsumura H, Raja Abdul Rahman RNZ, Normi YM. Probing the substrate binding modes and catalytic mechanisms of BLEG-1, a promiscuous B3 metallo-β-lactamase with glyoxalase II properties. PLoS One 2023; 18:e0291012. [PMID: 37672512 PMCID: PMC10482274 DOI: 10.1371/journal.pone.0291012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
BLEG-1 from Bacillus lehensis G1 is an evolutionary divergent B3 metallo-β-lactamase (MBL) that exhibited both β-lactamase and glyoxalase II (GLXII) activities. Sequence, phylogeny, biochemical and structural relatedness of BLEG-1 to B3 MBL and GLXII suggested BLEG-1 might be an intermediate in the evolutionary path of B3 MBL from GLXII. The unique active site cavity of BLEG-1 that recognizes both β-lactam antibiotics and S-D-lactoylglutathione (SLG) had been postulated as the key factor for its dual activity. In this study, dynamic ensembles of BLEG-1 and its substrate complexes divulged conformational plasticity and binding modes of structurally distinct substrates to the enzyme, providing better insights into its structure-to-function relationship and enzymatic promiscuity. Our results highlight the flexible nature of the active site pocket of BLEG-1, which is governed by concerted loop motions involving loop7+α3+loop8 and loop12 around the catalytic core, thereby moulding the binding pocket and facilitate interactions of BLEG-1 with both ampicillin and SLG. The distribution of (i) predominantly hydrophobic amino acids in the N-terminal domain, and (ii) flexible amino acids with polar and/or charged side chains in both N- and C-termini provide additional advantages to BLEG-1 in confining the aromatic group of ampicillin, and polar groups of SLG, respectively. The importance of these residues for substrates binding was further confirmed by the reduction in MBL and GLXII activities upon alanine substitutions of Ile-10, Phe-57, Arg-94, Leu-95, and Arg-159. Based on molecular dynamics simulation, mutational, and biochemical data presented herein, the catalytic mechanisms of BLEG-1 toward the hydrolysis of β-lactams and SLG were proposed.
Collapse
Affiliation(s)
- Shaw Xian Au
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azyyati Mohd Padzil
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu, Japan
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M. Normi
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Maatouk M, Merhej V, Pontarotti P, Ibrahim A, Rolain JM, Bittar F. Metallo-Beta-Lactamase-like Encoding Genes in Candidate Phyla Radiation: Widespread and Highly Divergent Proteins with Potential Multifunctionality. Microorganisms 2023; 11:1933. [PMID: 37630493 PMCID: PMC10459063 DOI: 10.3390/microorganisms11081933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The Candidate Phyla Radiation (CPR) was found to harbor a vast repertoire of genes encoding for enzymes with potential antibiotic resistance activity. Among these, as many as 3349 genes were predicted in silico to contain a metallo-beta-lactamase-like (MBL-like) fold. These proteins were subject to an in silico functional characterization by comparing their protein profiles (presence/absence of conserved protein domains) to other MBLs, including 24 already expressed in vitro, along with those of the beta-lactamase database (BLDB) (n = 761). The sequence similarity network (SSN) was then used to predict the functional clusters of CPR MBL-like sequences. Our findings showed that CPR MBL-like sequences were longer and more diverse than bacterial MBL sequences, with a high content of functional domains. Most CPR MBL-like sequences did not show any SSN connectivity with expressed MBLs, indicating the presence of many potential, yet unidentified, functions in CPR. In conclusion, CPR was shown to have many protein functions and a large sequence variability of MBL-like folds, exceeding all known MBLs. Further experimental and evolutionary studies of this superfamily of hydrolyzing enzymes are necessary to illustrate their functional annotation, origin, and expansion for adaptation or specialization within a given niche or compared to a specific substrate.
Collapse
Affiliation(s)
- Mohamad Maatouk
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Vicky Merhej
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Pierre Pontarotti
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Ahmad Ibrahim
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Jean-Marc Rolain
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Fadi Bittar
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
3
|
Diene SM, Pontarotti P, Azza S, Armstrong N, Pinault L, Chabrière E, Colson P, Rolain JM, Raoult D. Origin, Diversity, and Multiple Roles of Enzymes with Metallo-β-Lactamase Fold from Different Organisms. Cells 2023; 12:1752. [PMID: 37443786 PMCID: PMC10340364 DOI: 10.3390/cells12131752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
β-lactamase enzymes have generated significant interest due to their ability to confer resistance to the most commonly used family of antibiotics in human medicine. Among these enzymes, the class B β-lactamases are members of a superfamily of metallo-β-lactamase (MβL) fold proteins which are characterised by conserved motifs (i.e., HxHxDH) and are not only limited to bacteria. Indeed, as the result of several barriers, including low sequence similarity, default protein annotation, or untested enzymatic activity, MβL fold proteins have long been unexplored in other organisms. However, thanks to search approaches which are more sensitive compared to classical Blast analysis, such as the use of common ancestors to identify distant homologous sequences, we are now able to highlight their presence in different organisms including Bacteria, Archaea, Nanoarchaeota, Asgard, Humans, Giant viruses, and Candidate Phyla Radiation (CPR). These MβL fold proteins are multifunctional enzymes with diverse enzymatic or non-enzymatic activities of which, at least thirteen activities have been reported such as β-lactamase, ribonuclease, nuclease, glyoxalase, lactonase, phytase, ascorbic acid degradation, anti-cancer drug degradation, or membrane transport. In this review, we (i) discuss the existence of MβL fold enzymes in the different domains of life, (ii) present more suitable approaches to better investigating their homologous sequences in unsuspected sources, and (iii) report described MβL fold enzymes with demonstrated enzymatic or non-enzymatic activities.
Collapse
Affiliation(s)
- Seydina M. Diene
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Pierre Pontarotti
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- CNRS SNC5039, 13005 Marseille, France
| | - Saïd Azza
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Nicholas Armstrong
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Lucile Pinault
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Eric Chabrière
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Philippe Colson
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Jean-Marc Rolain
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Didier Raoult
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| |
Collapse
|
4
|
Candidate Phyla Radiation, an Underappreciated Division of the Human Microbiome, and Its Impact on Health and Disease. Clin Microbiol Rev 2022; 35:e0014021. [PMID: 35658516 DOI: 10.1128/cmr.00140-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candidate phyla radiation (CPR) is an emerging division of the bacterial domain within the human microbiota. Still poorly known, these microorganisms were first described in the environment in 1981 as "ultramicrobacteria" with a cell volume under 0.1 μm3 and were first associated with the human oral microbiota in 2007. The evolution of technology has been paramount for the study of CPR within the human microbiota. In fact, since these ultramicrobacteria have yet to be axenically cultured despite ongoing efforts, progress in imaging technology has allowed their observation and morphological description. Although their genomic abilities and taxonomy are still being studied, great strides have been made regarding their taxonomic classification, as well as their lifestyle. In addition, advancements in next-generation sequencing and the continued development of bioinformatics tools have allowed their detection as commensals in different human habitats, including the oral cavity and gastrointestinal and genital tracts, thus highlighting CPR as a nonnegligible part of the human microbiota with an impact on physiological settings. Conversely, several pathologies present dysbiosis affecting CPR levels, including inflammatory, mucosal, and infectious diseases. In this exhaustive review of the literature, we provide a historical perspective on the study of CPR, an overview of the methods available to study these organisms and a description of their taxonomy and lifestyle. In addition, their distribution in the human microbiome is presented in both homeostatic and dysbiotic settings. Future efforts should focus on developing cocultures and, if possible, axenic cultures to obtain isolates and therefore genomes that would provide a better understanding of these ultramicrobacteria, the importance of which in the human microbiome is undeniable.
Collapse
|
5
|
New Beta-lactamases in Candidate Phyla Radiation: Owning Pleiotropic Enzymes Is a Smart Paradigm for Microorganisms with a Reduced Genome. Int J Mol Sci 2022; 23:ijms23105446. [PMID: 35628255 PMCID: PMC9145738 DOI: 10.3390/ijms23105446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/08/2023] Open
Abstract
The increased exploitation of microbial sequencing methods has shed light on the high diversity of new microorganisms named Candidate Phyla Radiation (CPR). CPR are mainly detected via 16S rRNA/metabarcoding analyses or metagenomics and are found to be abundant in all environments and present in different human microbiomes. These microbes, characterized by their symbiotic/epiparasitic lifestyle with bacteria, are directly exposed to competition with other microorganisms sharing the same ecological niche. Recently, a rich repertoire of enzymes with antibiotic resistance activity has been found in CPR genomes by using an in silico adapted screening strategy. This reservoir has shown a high prevalence of putative beta-lactamase-encoding genes. We expressed and purified five putative beta-lactamase sequences having the essential domains and functional motifs from class A and class B beta-lactamase. Their enzymatic activities were tested against various beta-lactam substrates using liquid chromatography-mass spectrometry (LC-MS) and showed some beta-lactamase activity even in the presence of a beta-lactamase inhibitor. In addition, ribonuclease activity was demonstrated against RNA that was not inhibited by sulbactam and EDTA. None of these proteins could degrade single- and double-stranded-DNA. This study is the first to express and test putative CPR beta-lactamase protein sequences in vitro. Our findings highlight that the reduced genomes of CPR members harbor sequences encoding for beta-lactamases known to be multifunction hydrolase enzymes.
Collapse
|
6
|
Lupo V, Mercuri PS, Frère JM, Joris B, Galleni M, Baurain D, Kerff F. An Extended Reservoir of Class-D Beta-Lactamases in Non-Clinical Bacterial Strains. Microbiol Spectr 2022; 10:e0031522. [PMID: 35311582 PMCID: PMC9045261 DOI: 10.1128/spectrum.00315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial genes coding for antibiotic resistance represent a major issue in the fight against bacterial pathogens. Among those, genes encoding beta-lactamases target penicillin and related compounds such as carbapenems, which are critical for human health. Beta-lactamases are classified into classes A, B, C, and D, based on their amino acid sequence. Class D enzymes are also known as OXA beta-lactamases, due to the ability of the first enzymes described in this class to hydrolyze oxacillin. While hundreds of class D beta-lactamases with different activity profiles have been isolated from clinical strains, their nomenclature remains very uninformative. In this work, we have carried out a comprehensive survey of a reference database of 80,490 genomes and identified 24,916 OXA-domain containing proteins. These were deduplicated and their representative sequences clustered into 45 non-singleton groups derived from a phylogenetic tree of 1,413 OXA-domain sequences, including five clusters that include the C-terminal domain of the BlaR membrane receptors. Interestingly, 801 known class D beta-lactamases fell into only 18 clusters. To probe the unknown diversity of the class, we selected 10 protein sequences in 10 uncharacterized clusters and studied the activity profile of the corresponding enzymes. A beta-lactamase activity could be detected for seven of them. Three enzymes (OXA-1089, OXA-1090 and OXA-1091) were active against oxacillin and two against imipenem. These results indicate that, as already reported, environmental bacteria constitute a large reservoir of resistance genes that can be transferred to clinical strains, whether through plasmid exchange or hitchhiking with the help of transposase genes. IMPORTANCE The transmission of genes coding for resistance factors from environmental to nosocomial strains is a major component in the development of bacterial resistance toward antibiotics. Our survey of class D beta-lactamase genes in genomic databases highlighted the high sequence diversity of the enzymes that are able to recognize and/or hydrolyze beta-lactam antibiotics. Among those, we could also identify new beta-lactamases that are able to hydrolyze carbapenems, one of the last resort antibiotic families used in human antimicrobial chemotherapy. Therefore, it can be expected that the use of this antibiotic family will fuel the emergence of new beta-lactamases into clinically relevant strains.
Collapse
Affiliation(s)
- Valérian Lupo
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | | | - Jean-Marie Frère
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Bernard Joris
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Maatouk M, Ibrahim A, Rolain JM, Merhej V, Bittar F. Small and Equipped: the Rich Repertoire of Antibiotic Resistance Genes in Candidate Phyla Radiation Genomes. mSystems 2021; 6:e0089821. [PMID: 34874773 PMCID: PMC8651080 DOI: 10.1128/msystems.00898-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Microbes belonging to Candidate Phyla Radiation (CPR) have joined the tree of life as a new branch, thanks to the intensive application of metagenomics and sequencing technologies. CPR have been eventually identified by 16S rRNA analysis, and they represent more than 26% of microbial diversity. Despite their ultrasmall size, reduced genome, and metabolic pathways which mainly depend on exosymbiotic or exoparasitic relationships with the bacterial host, CPR microbes were found to be abundant in almost all environments. They can be considered survivors in highly competitive circumstances within microbial communities. However, their defense mechanisms and phenotypic characteristic remain poorly explored. Here, we conducted a thorough in silico analysis on 4,062 CPR genomes to search for antibiotic resistance (AR)-like enzymes using BLASTp and functional domain predictions against an exhaustive consensus AR database and conserved domain database (CDD), respectively. Our findings showed that a rich reservoir of divergent AR-like genes (n = 30,545 hits, mean = 7.5 hits/genome [0 to 41]) were distributed across the 13 CPR superphyla. These AR-like genes encode 89 different enzymes that are associated with 14 different chemical classes of antimicrobials. Most hits found (93.6%) were linked to glycopeptide, beta-lactam, macrolide-lincosamide-streptogramin (MLS), tetracycline, and aminoglycoside resistance. Moreover, two AR profiles were discerned for the Microgenomates group and "Candidatus Parcubacteria," which were distinct between them and differed from all other CPR superphyla. CPR cells seem to be active players during microbial competitive interactions; they are well equipped for microbial combat in different habitats, which ensures their natural survival and continued existence. IMPORTANCE To our knowledge, this study is one of the few studies that characterize the defense systems in the CPR group and describes the first repertoire of antibiotic resistance (AR) genes. The use of a BLAST approach with lenient criteria followed by a careful examination of the functional domains has yielded a variety of enzymes that mainly give three different mechanisms of action of resistance. Our genome analysis showed the existence of a rich reservoir of CPR resistome, which is associated with different antibiotic families. Moreover, this analysis revealed the hidden face of the reduced-genome CPR, particularly their weaponry with AR genes. These data suggest that CPR are competitive players in the microbial war, and they can be distinguished by specific AR profiles.
Collapse
Affiliation(s)
- Mohamad Maatouk
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Ahmad Ibrahim
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Vicky Merhej
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Fadi Bittar
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
8
|
Melenotte C, Pontarotti P, Pinault L, Mège JL, Devaux C, Raoult D. Could β-Lactam Antibiotics Block Humoral Immunity? Front Immunol 2021; 12:680146. [PMID: 34603278 PMCID: PMC8480522 DOI: 10.3389/fimmu.2021.680146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
It has been reported that treatment with β-lactam antibiotics induces leukopenia and candidemia, worsens the clinical response to anticancer immunotherapy and decreases immune response to vaccination. β-lactamases can cleave β-lactam antibiotics by blocking their activity. Two distincts superfamilies of β-lactamases are described, the serine β-lactamases and the zinc ion dependent metallo-β-lactamases. In human, 18 metallo-β-lactamases encoding genes (hMBLs) have been identified. While the physiological role of most of them remains unknown, it is well established that the SNM1A, B and C proteins are involved in DNA repair. The SNM1C/Artemis protein is precisely associated in the V(D)J segments rearrangement, that leads to immunoglobulin (Ig) and T-cell receptor variable regions, which have a crucial role in the immune response. Thus in humans, SNM1C/Artemis mutation is associated with severe combined immunodeficiency characterized by hypogammaglobulinemia deficient cellular immunity and opportunistic infections. While catalytic site of hMBLs and especially that of the SNM1 family is highly conserved, in vitro studies showed that some β-lactam antibiotics, and precisely third generation of cephalosporin and ampicillin, inhibit the metallo-β-lactamase proteins SNM1A & B and the SNM1C/Artemis protein complex. By analogy, the question arises as to whether β-lactam antibiotics can block the SNM1C/Artemis protein in humans inducing transient immunodeficiency. We reviewed here the literature data supporting this hypothesis based on in silico, in vitro and in vivo evidences. Understanding the impact of β-lactam antibiotics on the immune cell will offer new therapeutic clues and new clinical approaches in oncology, immunology, and infectious diseases.
Collapse
Affiliation(s)
- Cléa Melenotte
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Lucile Pinault
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mège
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
9
|
Diene SM, Pinault L, Baron SA, Azza S, Armstrong N, Hadjadj L, Chabrière E, Rolain JM, Pontarotti P, Raoult D. A metallo-β-lactamase enzyme for internal detoxification of the antibiotic thienamycin. Sci Rep 2021; 11:10062. [PMID: 33980996 PMCID: PMC8115136 DOI: 10.1038/s41598-021-89600-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Thienamycin, the first representative of carbapenem antibiotics was discovered in the mid-1970s from soil microorganism, Streptomyces cattleya, during the race to discover inhibitors of bacterial peptidoglycan synthesis. Chemically modified into imipenem (N-formimidoyl thienamycin), now one of the most clinically important antibiotics, thienamycin is encoded by a thienamycin gene cluster composed of 22 genes (thnA to thnV) from S. cattleya NRRL 8057 genome. Interestingly, the role of all thn-genes has been experimentally demonstrated in the thienamycin biosynthesis, except thnS, despite its annotation as putative β-lactamase. Here, we expressed thnS gene and investigated its activities against various substrates. Our analyses revealed that ThnS belonged to the superfamily of metallo-β-lactamase fold proteins. Compared to known β-lactamases such as OXA-48 and NDM-1, ThnS exhibited a lower affinity and less efficiency toward penicillin G and cefotaxime, while imipenem is more actively hydrolysed. Moreover, like most MBL fold enzymes, additional enzymatic activities of ThnS were detected such as hydrolysis of ascorbic acid, single strand DNA, and ribosomal RNA. ThnS appears as a MBL enzyme with multiple activities including a specialised β-lactamase activity toward imipenem. Thus, like toxin/antitoxin systems, the role of thnS gene within the thienamycin gene cluster appears as an antidote against the produced thienamycin.
Collapse
Affiliation(s)
- Seydina M Diene
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Saïd Azza
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Nicholas Armstrong
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Linda Hadjadj
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,CNRS, Marseille, France
| | - Didier Raoult
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
10
|
Colson P, Pinault L, Azza S, Armstrong N, Chabriere E, La Scola B, Pontarotti P, Raoult D. A protein of the metallo-hydrolase/oxidoreductase superfamily with both beta-lactamase and ribonuclease activity is linked with translation in giant viruses. Sci Rep 2020; 10:21685. [PMID: 33303919 PMCID: PMC7729979 DOI: 10.1038/s41598-020-78658-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins with a metallo-beta-lactamase (MBL) fold have been largely studied in bacteria in the framework of resistance to beta-lactams, but their spectrum of activities is broader. We show here that the giant Tupanvirus also encodes a MBL fold-protein that has orthologs in other giant viruses, a deep phylogenetic root and is clustered with tRNases. This protein is significantly associated with translation components in giant viruses. After expression in Escherichia coli, it was found to hydrolyse nitrocefin, a beta-lactam, and penicillin G. This was inhibited by sulbactam, a beta-lactamase inhibitor. In addition, the tupanvirus MBL fold-protein was not active on single- or double-stranded DNA, but degraded RNAs from bacteria and Acanthamoeba castellanii, the tupanvirus amoebal host. This activity was not neutralized by sulbactam. Overall, our results still broaden the host range of MBL fold-proteins, showing dual beta-lactamase/nuclease activities in giant viruses.
Collapse
Affiliation(s)
- Philippe Colson
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Lucile Pinault
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Said Azza
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Nicholas Armstrong
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Chabriere
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Pierre Pontarotti
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France.,CNRS, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005, Marseille, France. .,IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|