1
|
Alessia C, Federica DA, Claudia P, Barbara C, Laura Z, Silvano O. A preliminary survey of the cellular responses of the black fungus Cryomyces antarcticus to long and short-term dehydration. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13309. [PMID: 39075848 PMCID: PMC11286975 DOI: 10.1111/1758-2229.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/08/2024] [Indexed: 07/31/2024]
Abstract
The McMurdo Dry Valleys in Southern Victoria Land, Antarctica, are known for their extreme aridity, cold, and nutrient-poor conditions. These valleys provide a valuable comparison to environments on Mars. The survival of microorganisms in these areas hinges on their ability to withstand dehydration due to the limited availability of liquid water. Some microorganisms have adapted to survive extended periods of metabolic inactivity and dehydration, a physiological response to the harsh conditions in which they exist. This adaptation is significant for astrobiology studies as it allows for testing the resilience of microorganisms under extraterrestrial conditions, exploring the boundaries and potential for life beyond Earth. In this study, we examined the survivability, metabolic activity, cellular membrane integrity, and ultrastructural damage of Cryomyces antarcticus, a eukaryotic organism used for astrobiological studies, following two dehydration processes. We conducted a fast dehydration process, simulating what happens on the surface of Antarctic rocks under typical environmental conditions, and a slow dehydration process, which is commonly used in astrobiological experiments. Our findings revealed a higher percentage of damaged cells following slow dehydration treatments, confirming that rapid dehydration reflects the adaptability of microorganisms to respond to sudden and drastic changes in the Antarctic environment.
Collapse
Affiliation(s)
- Cassaro Alessia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - D' Alò Federica
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Research on Terrestrial EcosystemsNational Research CouncilPorano (TR)Italy
| | - Pacelli Claudia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Human Spaceflight and Scientific Research UnitItalian Space AgencyRomeItaly
| | - Cavalazzi Barbara
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- LE STUDIUM Institute for Advanced StudiesOrléansFrance
| | - Zucconi Laura
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Polar SciencesNational Research Council of Italy (CNR‐ISP)MessinaItaly
| | - Onofri Silvano
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| |
Collapse
|
2
|
Cassaro A, Pacelli C, Baqué M, Maturilli A, Böttger U, Fujimori A, Moeller R, de Vera JPP, Onofri S. Spectroscopic investigations of fungal biomarkers after exposure to heavy ion irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123073. [PMID: 37453382 DOI: 10.1016/j.saa.2023.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions. We analyzed the feasibility to detect fungal compounds with Raman and Infrared spectroscopies after exposure to these space-relevant radiations.
Collapse
Affiliation(s)
- A Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - C Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy; Italian Space Agency, Via del Politecnico snc, Rome, Italy.
| | - M Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - A Maturilli
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - U Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems Berlin, Germany
| | - A Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba, Japan
| | - R Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, DLR, Linder Höhe, D-51147 Köln, Germany; University of Applied Sciences Bonn-Rhein-Sieg (BRSU), Natural Sciences, von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - J-P P de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, MUSC, Linder Höhe, D-51147 Köln, Germany; University of Potsdam, Institute for Biochemistry and Biology, WG Biodiversity/ Systematic Botany, Maulbeerallee 1, 14469 Potsdam, Germany
| | - S Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Canini F, Borruso L, Newsham KK, D'Alò F, D'Acqui LP, Zucconi L. Wide divergence of fungal communities inhabiting rocks and soils in a hyper-arid Antarctic desert. Environ Microbiol 2023; 25:3671-3682. [PMID: 37964667 DOI: 10.1111/1462-2920.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Highly simplified microbial communities colonise rocks and soils of continental Antarctica ice-free deserts. These two habitats impose different selection pressures on organisms, yet the possible filtering effects on the diversity and composition of microbial communities have not hitherto been fully characterised. We hence compared fungal communities in rocks and soils in three localities of inner Victoria Land. We found low fungal diversity in both substrates, with a mean species richness of 28 across all samples, and significantly lower diversity in rocks than in soils. Rock and soil communities were strongly differentiated, with a multinomial species classification method identifying just three out of 328 taxa as generalists with no affinity for either substrate. Rocks were characterised by a higher abundance of lichen-forming fungi (typically Buellia, Carbonea, Pleopsidium, Lecanora, and Lecidea), possibly owing to the more protected environment and the porosity of rocks permitting photosynthetic activity. In contrast, soils were dominated by obligate yeasts (typically Naganishia and Meyerozyma), the abundances of which were correlated with edaphic factors, and the black yeast Cryomyces. Our study suggests that strong differences in selection pressures may account for the wide divergences of fungal communities in rocks and soils of inner Victoria Land.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bozen-Bolzano, Italy
| | - Kevin K Newsham
- British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cambridge, UK
| | - Federica D'Alò
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Porano (TR), Italy
| | - Luigi P D'Acqui
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Sesto Fiorentino (FI), Italy
| |
Collapse
|
4
|
Aureli L, Coleine C, Delgado-Baquerizo M, Ahren D, Cemmi A, Di Sarcina I, Onofri S, Selbmann L. Geography and environmental pressure are predictive of class-specific radioresistance in black fungi. Environ Microbiol 2023; 25:2931-2942. [PMID: 37775957 DOI: 10.1111/1462-2920.16510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Black fungi are among the most resistant organisms to ionizing radiation on Earth. However, our current knowledge is based on studies on a few isolates, while the overall radioresistance limits across this microbial group and the relationship with local environmental conditions remain largely undetermined. To address this knowledge gap, we assessed the survival of 101 strains of black fungi isolated across a worldwide spatial distribution to gamma radiation doses up to 100 kGy. We found that intra and inter-specific taxonomy, UV radiation, and precipitation levels primarily influence the radioresistance in black fungi. Altogether, this study provides insights into the adaptive mechanisms of black fungi to extreme environments and highlights the role of local adaptation in shaping the survival capabilities of these extreme-tolerant organisms.
Collapse
Affiliation(s)
- Lorenzo Aureli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Biology, Lund University, Lund, Sweden
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Dag Ahren
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden
| | - Alessia Cemmi
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA FSN-FISS-SNI), Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA FSN-FISS-SNI), Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genoa, Italy
| |
Collapse
|
5
|
Thitla T, Kumla J, Hongsanan S, Senwanna C, Khuna S, Lumyong S, Suwannarach N. Exploring diversity rock-inhabiting fungi from northern Thailand: a new genus and three new species belonged to the family Herpotrichiellaceae. Front Cell Infect Microbiol 2023; 13:1252482. [PMID: 37692164 PMCID: PMC10485699 DOI: 10.3389/fcimb.2023.1252482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Members of the family Herpotrichiellaceae are distributed worldwide and can be found in various habitats including on insects, plants, rocks, and in the soil. They are also known to be opportunistic human pathogens. In this study, 12 strains of rock-inhabiting fungi that belong to Herpotrichiellaceae were isolated from rock samples collected from forests located in Lamphun and Sukhothai provinces of northern Thailand during the period from 2021 to 2022. On the basis of the morphological characteristics, growth temperature, and multi-gene phylogenetic analyses of a combination of the internal transcribed spacer, the large subunit, and the small subunit of ribosomal RNA, beta tubulin and the translation elongation factor 1-a genes, the new genus, Petriomyces gen. nov., has been established to accommodate the single species, Pe. obovoidisporus sp. nov. In addition, three new species of Cladophialophora have also been introduced, namely, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis. Descriptions, illustrations, and a phylogenetic trees indicating the placement of these new taxa are provided. Here, we provide updates and discussions on the phylogenetic placement of other fungal genera within Herpotrichiellaceae.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Chanokned Senwanna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Gevi F, Leo P, Cassaro A, Pacelli C, de Vera JPP, Rabbow E, Timperio AM, Onofri S. Metabolomic Profile of the Fungus Cryomyces antarcticus Under Simulated Martian and Space Conditions as Support for Life-Detection Missions on Mars. Front Microbiol 2022; 13:749396. [PMID: 35633719 PMCID: PMC9133366 DOI: 10.3389/fmicb.2022.749396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Patrick Leo
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Venice, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | | | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine (DLR), Cologne, Germany
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
7
|
Cassaro A, Pacelli C, Baqué M, Cavalazzi B, Gasparotto G, Saladino R, Botta L, Böttger U, Rabbow E, de Vera JP, Onofri S. Investigation of fungal biomolecules after Low Earth Orbit exposure: a testbed for the next Moon missions. Environ Microbiol 2022; 24:2938-2950. [PMID: 35437941 PMCID: PMC9540993 DOI: 10.1111/1462-2920.15995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
The Moon is characterized by extremely harsh conditions due to ultraviolet irradiation, wide temperature extremes, vacuum resulting from the absence of an atmosphere and high ionizing radiation. Therefore, its surface may provide a unique platform to investigate the effects of such conditions. For lunar exploration with the Lunar Gateway platform, exposure experiments in Low Earth Orbit are useful testbeds to prepare for lunar space experiments and to understand how and if potential biomarkers are influenced by extra‐terrestrial conditions. During the BIOMEX (BIOlogy and Mars EXperiment) project, dried colonies of the fungus Cryomyces antarcticus grown on Lunar Regolith Analogue (LRA) were exposed to space conditions for 16 months aboard the EXPOSE‐R2 payload outside the International Space Station. In this study, we investigated the stability/degradation of fungal biomarkers in LRA after exposure to (i) simulated space and (ii) real space conditions, using Raman spectroscopy, gas chromatography–mass spectrometry and DNA amplification. The results demonstrated that fungal biomarkers were detectable after 16 months of real space exposure. This work will contribute to the interpretation of data from future biological experiments in the Cislunar orbit with the Lunar Gateway platform and/or on the lunar surface, in preparation for the next step of human exploration.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy.,Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, 00133, Italy
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstraße 2, Berlin, Germany
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy.,Department of Geology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.,Le Studium Loire Valley Institute for Advanced Studies, Rue Dupanloup 1, Orléans, France
| | - Giorgio Gasparotto
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstraße 2, Berlin, Germany
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, Cologne, 51147, Germany
| | - Jean-Pierre de Vera
- Space Operations and Astronaut Training, MUSC, German Aerospace Center (DLR), Linder Höhe, Cologne, 51147, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| |
Collapse
|
8
|
Cassaro A, Pacelli C, Baqué M, de Vera JPP, Böttger U, Botta L, Saladino R, Rabbow E, Onofri S. Fungal Biomarkers Stability in Mars Regolith Analogues after Simulated Space and Mars-like Conditions. J Fungi (Basel) 2021; 7:jof7100859. [PMID: 34682280 PMCID: PMC8540304 DOI: 10.3390/jof7100859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
The discovery of life on other planets and moons in our solar system is one of the most important challenges of this era. The second ExoMars mission will look for traces of extant or extinct life on Mars. The instruments on board the rover will be able to reach samples with eventual biomarkers until 2 m of depth under the planet’s surface. This exploration capacity offers the best chance to detect biomarkers which would be mainly preserved compared to samples on the surface which are directly exposed to harmful environmental conditions. Starting with the studies of the endolithic meristematic black fungus Cryomyces antarcticus, which has proved its high resistance under extreme conditions, we analyzed the stability and the resistance of fungal biomarkers after exposure to simulated space and Mars-like conditions, with Raman and Gas Chromatography–Mass Spectrometry, two of the scientific payload instruments on board the rover.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
- Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-068567466
| | - Mickael Baqué
- German Aerospace Center (DLR), Planetary Laboratories Department, Institute of Planetary Research, Ruthefordstraße 2, 12489 Berlin, Germany;
| | - Jean-Pierre Paul de Vera
- MUSC, German Aerospace Center (DLR), Space Operations and Astronaut Training, 51147 Köln, Germany;
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, 12489 Berlin, Germany;
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Elke Rabbow
- Radiation Biology Division, Institute of Aerospace Medicine, DLR, Linder Höhe, 51147 Köln, Germany;
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| |
Collapse
|
9
|
Culture-Dependent and Amplicon Sequencing Approaches Reveal Diversity and Distribution of Black Fungi in Antarctic Cryptoendolithic Communities. J Fungi (Basel) 2021; 7:jof7030213. [PMID: 33809619 PMCID: PMC8001563 DOI: 10.3390/jof7030213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the harshest environmental conditions of the Antarctic desert, normally incompatible with active life, microbes are adapted to exploit the cryptoendolithic habitat (i.e., pore spaces of rocks) and represent the predominant life-forms. In the rocky niche, microbes take advantage of the thermal buffering, physical stability, protection against UV radiation, excessive solar radiation, and water retention-of paramount importance in one of the driest environments on Earth. In this work, high-throughput sequencing and culture-dependent approaches have been combined, for the first time, to untangle the diversity and distribution of black fungi in the Antarctic cryptoendolithic microbial communities, hosting some of the most extreme-tolerant microorganisms. Rock samples were collected in a vast area, along an altitudinal gradient and opposite sun exposure-known to influence microbial diversity-with the aim to compare and integrate results gained with the two approaches. Among black fungi, Friedmanniomyces endolithicus was confirmed as the most abundant taxon. Despite the much stronger power of the high-throughput sequencing, several species were not retrieved with DNA sequencing and were detectable by cultivation only. We conclude that both culture-dependent and -independent analyses are needed for a complete overview of black fungi diversity. The reason why some species remain undetectable with molecular methods are speculated upon. The effect of environmental parameters such as sun exposure on relative abundance was clearer if based on the wider biodiversity detected with the molecular approach.
Collapse
|
10
|
Cheptsov VS, Belov AA, Vorobyova EA, Pavlov AK, Lomasov VN. Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions. Microorganisms 2021; 9:198. [PMID: 33477915 PMCID: PMC7833375 DOI: 10.3390/microorganisms9010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great influence. However, the influence of factors such as the radiation intensity (in low-temperature conditions) and the type of mineral matrix, in which microorganisms are located, has been practically unstudied. It has been shown that the radioresistance of bacteria can increase after their exposure to sublethal doses and subsequent repair of damage under favorable conditions, however, such studies are also few and the influence of other factors of extraterrestrial space (temperature, pressure) was not studied in them. The viability of bacteria Arthrobacter polychromogenes, Kocuria rosea and Xanthomonas sp. after irradiation with gamma radiation at a dose of 1 kGy under conditions of low pressure (1 Torr) and low temperature (-50 °C) at different radiation intensities (4 vs. 0.8 kGy/h) with immobilization of bacteria on various mineral matrices (montmorillonite vs. analogue of lunar dust) has been studied. Native, previously non-irradiated strains, and strains that were previously irradiated with gamma radiation and subjected to 10 passages of cultivation on solid media were irradiated. The number of survived cells was determined by culturing on a solid medium. It has been shown that the radioresistance of bacteria depends significantly on the type of mineral matrix, on which they are immobilized, wherein montmorillonite contributes to an increased survivability in comparison with a silicate matrix. Survivability of the studied bacteria was found to increase with decreasing radiation intensity, despite the impossibility of active reparation processes under experimental conditions. Considering the low intensity of radiation on various space objects in comparison with radiobiological experiments, this suggests a longer preservation of the viable microorganisms outside the Earth than is commonly believed. An increase in bacterial radioresistance was revealed even after one cycle of irradiation of the strains and their subsequent cultivation under favourable conditions. This indicates the possibility of hypothetical microorganisms on Mars increasing their radioresistance.
Collapse
Affiliation(s)
- Vladimir S. Cheptsov
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str., 84/32, 117997 Moscow, Russia
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Andrey A. Belov
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Elena A. Vorobyova
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Anatoli K. Pavlov
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Polytechnicheskaya Street, 26, 194021 Saint-Petersburg, Russia;
| | - Vladimir N. Lomasov
- STC “Nuclear Physics”, Peter the Great St. Petersburg State Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia;
| |
Collapse
|