1
|
Zhao L, Chen C, Wang L, Liu Y, Gong F, Wang J, Sun H, Wang D, Wang Z. Photoperiod-regulated mitophagy in the germ cells of Brandt's voles (Lasiopodomys brandtii). Integr Zool 2024; 19:1105-1120. [PMID: 38556617 DOI: 10.1111/1749-4877.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunxiao Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Yan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Lu W, Chen M, Zhou Y, Ramírez MDA, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. EGFR-ERK1/2 signaling and mitochondrial dynamics in seasonal ovarian steroidogenesis of the muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2024; 243:106558. [PMID: 38815727 DOI: 10.1016/j.jsbmb.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17β-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17β-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqi Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhou
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | | | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Errico A, Vinco S, Ambrosini G, Dalla Pozza E, Marroncelli N, Zampieri N, Dando I. Mitochondrial Dynamics as Potential Modulators of Hormonal Therapy Effectiveness in Males. BIOLOGY 2023; 12:547. [PMID: 37106748 PMCID: PMC10135745 DOI: 10.3390/biology12040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Worldwide the incidence of andrological diseases is rising every year and, together with it, also the interest in them is increasing due to their strict association with disorders of the reproductive system, including impairment of male fertility, alterations of male hormones production, and/or sexual function. Prevention and early diagnosis of andrological dysfunctions have long been neglected, with the consequent increase in the incidence and prevalence of diseases otherwise easy to prevent and treat if diagnosed early. In this review, we report the latest evidence of the effect of andrological alterations on fertility potential in both young and adult patients, with a focus on the link between gonadotropins' mechanism of action and mitochondria. Indeed, mitochondria are highly dynamic cellular organelles that undergo rapid morphological adaptations, conditioning a multitude of aspects, including their size, shape, number, transport, cellular distribution, and, consequently, their function. Since the first step of steroidogenesis takes place in these organelles, we consider that mitochondria dynamics might have a possible role in a plethora of signaling cascades, including testosterone production. In addition, we also hypothesize a central role of mitochondria fission boost on the decreased response to the commonly administrated hormonal therapy used to treat urological disease in pediatric and adolescent patients as well as infertile adults.
Collapse
Affiliation(s)
- Andrea Errico
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Sara Vinco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nunzio Marroncelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nicola Zampieri
- Department of Engineering and Innovation Medicine, Paediatric Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, 37100 Verona, Italy;
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| |
Collapse
|
4
|
Gu X, Heinrich A, Li SY, DeFalco T. Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions. Nat Commun 2023; 14:1439. [PMID: 36922518 PMCID: PMC10017703 DOI: 10.1038/s41467-023-37199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
A growing body of evidence demonstrates that fetal-derived tissue-resident macrophages have developmental functions. It has been proposed that macrophages promote testicular functions, but which macrophage populations are involved is unclear. Previous studies showed that macrophages play critical roles in fetal testis morphogenesis and described two adult testicular macrophage populations, interstitial and peritubular. There has been debate regarding the hematopoietic origins of testicular macrophages and whether distinct macrophage populations promote specific testicular functions. Here our hematopoietic lineage-tracing studies in mice show that yolk-sac-derived macrophages comprise the earliest testicular macrophages, while fetal hematopoietic stem cells (HSCs) generate monocytes that colonize the gonad during a narrow time window in a Sertoli-cell-dependent manner and differentiate into adult testicular macrophages. Finally, we show that yolk-sac-derived versus HSC-derived macrophages have distinct functions during testis morphogenesis, while interstitial macrophages specifically promote adult Leydig cell steroidogenesis. Our findings provide insight into testicular macrophage origins and their tissue-specific roles.
Collapse
Affiliation(s)
- Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Anna Heinrich
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
Bassi G, Sidhu SK, Mishra S. The intracellular cholesterol pool in steroidogenic cells plays a role in basal steroidogenesis. J Steroid Biochem Mol Biol 2022; 220:106099. [PMID: 35339650 DOI: 10.1016/j.jsbmb.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/20/2022] [Indexed: 11/21/2022]
Abstract
The framework of steroidogenesis across steroidogenic cells is constructed around cholesterol - the precursor substrate molecule for all steroid hormones - including its cellular uptake, storage in intracellular lipid droplets, mobilization upon steroidogenic stimulation, and finally, its transport to the mitochondria, where steroidogenesis begins. Thus, cholesterol and the mitochondria are highly interconnected in steroidogenic cells. Moreover, accruing evidence suggests that autophagy and mitochondrial dynamics are important cellular events in the regulation of trophic hormone-induced cholesterol homeostasis and steroidogenesis. However, a potential role of cholesterol in itself in the regulation of steroidogenic factors and events remain largely unexplored. We tested the hypothesis that cholesterol plays a role in the regulation of cell-intrinsic factors and events involving steroidogenesis. Here, we show that depleting the intracellular cholesterol pool in steroidogenic cells induces autophagy, affects mitochondrial dynamics, and upregulates steroidogenic factors and basal steroidogenesis in three different steroidogenic cell types producing different steroid hormones. Notably, the cholesterol insufficiency-induced changes in different steroidogenic cell types occur independent of pertinent hormone stimulation and work in a dynamic and temporal manner with or without hormonal stimulation. Such effects of cholesterol deprivation on autophagy and mitochondrial dynamics were not observed in the non-steroidogenic cells, indicating that cholesterol insufficiency-induced changes in steroidogenic cells are specific to steroidogenesis. Thus, our data suggests a role of cholesterol in steroidogenesis beyond being a mere substrate for steroid hormones. The implications of our findings are broad and offer new insights into trophic hormone-dependent and hormone-independent steroidogenesis during development, as well as in health and disease.
Collapse
Affiliation(s)
- Geetika Bassi
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Simarjit Kaur Sidhu
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada; Department of Internal Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada.
| |
Collapse
|
6
|
Bassi G, Mishra S. Prohibitin-1 plays a regulatory role in Leydig cell steroidogenesis. iScience 2022; 25:104165. [PMID: 35434552 PMCID: PMC9010647 DOI: 10.1016/j.isci.2022.104165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/20/2021] [Accepted: 03/24/2022] [Indexed: 10/31/2022] Open
Abstract
Mitochondria are essential for steroidogenesis. In steroidogenic cells, the initiation of steroidogenesis from cholesterol occurs on the matrix side of the inner mitochondrial membrane by the enzyme P450scc. This requires cholesterol import from the cytoplasm through the outer mitochondrial membrane, facilitated by the StAR protein. The subsequent steps leading to P450scc remain elusive. Here we report that the male transgenic mice that expressed a mutant form of a mitochondrial protein prohibitin-1 (PHB1Tyr114Phe) from the Fabp-4 gene promoter displayed smaller testes, higher testosterone, and lower gonadotropin levels compared with PHB1-expressing and wild-type mice. A subsequent analysis of the testis and Leydig cells from the mice revealed that PHB1 played a previously unknown regulatory role in Leydig cell steroidogenesis. This includes a role in coordinating cell signaling, cholesterol homeostasis, and mitochondrial biology pertaining to steroidogenesis. The implications of our finding are broad as the initial stages of steroidogenesis are indistinguishable across steroidogenic cells. Tyr114Phe-PHB-1 transgenic male mice reveal PHB-1’s role in testosterone production PHB-1 coordinates steroidogenic signaling and events in testosterone biosynthesis Tyr114 residue in PHB-1 plays a regulatory role in testosterone production
Collapse
|
7
|
Liu H, Zheng H, Li Y, Tang Y, Peng H, Li Q, Zhuang J, Zhou Y, Zhou Y, Tu X, Zhang X. "Seminal testosterone", rising viewpoint of local spermatogenesis in nonobstructive azoospermia: One center long-term bidirectional cohort study. Front Endocrinol (Lausanne) 2022; 13:992556. [PMID: 36568123 PMCID: PMC9772016 DOI: 10.3389/fendo.2022.992556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Reproductive hormones are a traditional good method to evaluate spermatogenesis but might not accurately represent local spermatogenesis. To find a more accurate method, seminal reproductive hormones were studied. METHODS A bidirectional cohort study was performed. A total of 126 infertile men from 2018 to 2019 were retrospectively analyzed. They were divided into nonobstructive azoospermia (NOA), oligozoospermia (OLZ) and normal (NOR) groups. A prospective study was conducted on patients in the NOA and OLZ groups for 2 years. Microscopic testicular sperm extraction was performed for NOA patients, who were divided into a focal spermatogenesis group (FS) and an idiopathic azoospermia group (IA). Drug treatment was for OLZ patients, who were divided into a valid group (VA) and an invalid group (IN). The differences in sperm parameters and reproductive hormones were compared. ANOSIM analysis was used between and within groups. Pearson correlation analysis, CO inertia analysis and Proctor's analysis were for relationships. ROC curve for the specificity and sensitivity. Time series analysis was for the trends between hormones and time. RESULTS The b-FSH, b-LH, s-T and ΔT in the NOA group were significantly higher than those in the OLZ and NOR groups. However, the s-FSH, s-E2, s-P, ΔFSH, ΔLH, ΔP and ΔE2 were lower. Thirty-one NOA patients underwent MTSE, of whom 12 had sperm (FS) and 19 had no sperm (IA). The s-FSH and s-E2 of the FS group were higher than those of the IA group. Twenty-six OLZ patients completed 30 days of treatment, of which 11 had an improved sperm count (VA) and 15 had no (IN). The ΔT of the VA group was higher than that of the IN group. After follow-up for 2 years, 18 patients' results showed that b-FSH, b-LH and s-T were different over time, with delays of 19, 3 and -19 days. SC is closely related to pH, s-FSH, s-LH, s-E2, s-P, s-T, b-FSH, b-LH, ΔFSH, ΔLH, ΔP, ΔE2 and ΔT. There were complex common trends and relationships between different kinds of hormones. s-FSH, s-LH, s-E2, s-P, s-T, b-FSH and b-LH were useful to judge spermatogenesis, of which s-T, b-FSH and b-LH were more sensitive. If s-T, b-FSH and b-LH reached 64.4, 9.4 and 4.7, respectively, their prediction performance was the strongest. CONCLUSION Seminal testosterone is sensitive for judging local spermatogenesis in nonobstructive azoospermia patients, which may be the direction of local spermatogenesis in nonobstructive azoospermia. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/index.aspx, identifier ChiCTR2200060463.
Collapse
Affiliation(s)
- Huang Liu
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
- *Correspondence: Xiang’an Tu, ; Xinzong Zhang, ; Huang Liu,
| | - Houbin Zheng
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yuehua Li
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yuqian Tang
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Hongbo Peng
- Department of Clinical Laboratory, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Qianyi Li
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Jiaming Zhuang
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yingyi Zhou
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yu Zhou
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Xiang’an Tu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiang’an Tu, ; Xinzong Zhang, ; Huang Liu,
| | - Xinzong Zhang
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
- *Correspondence: Xiang’an Tu, ; Xinzong Zhang, ; Huang Liu,
| |
Collapse
|
8
|
De Santi B, Spaggiari G, Granata AR, Romeo M, Molinari F, Simoni M, Santi D. From subjective to objective: A pilot study on testicular radiomics analysis as a measure of gonadal function. Andrology 2021; 10:505-517. [PMID: 34817934 PMCID: PMC9299912 DOI: 10.1111/andr.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The connection between testicular ultrasound (US) parameters and testicular function, including both spermato- and steroidogenesis has been largely suggested, but their predictive properties are not routinely applied. Radiomics, a new engineering approach to radiological imaging, could overcome the visual limit of the sonographer. OBJECTIVES This study is aimed at extracting objective testicular US features, correlating with testicular function, including both spermato- and steroidogenesis, using an engineering approach, in order to overcome the operator-dependent subjectivity. MATERIALS AND METHODS Prospective observational pilot study from December 2019 to December 2020 on normozoospermic subjects and patients with semen variables alterations, excluding azoospermia. All patients underwent conventional semen analysis, pituitary-gonadal hormones assessment, and testicular US, performed by the same operator. US images were analyzed by Biolab (Turin) throughout image segmentation, image pre-processing, and texture features extraction. RESULTS One hundred seventy US testicular images were collected from 85 patients (age 38.6 ± 9.1 years). A total of 44 first-order and advanced features were extracted. US inhomogeneity defined by radiomics significantly correlates with the andrologist definition, showing for the first time a mathematical quantification of a subjective US evaluation. Thirteen US texture features correlated with semen parameters, predicting sperm concentration, total sperm number, progressive motility, total motility and morphology, and with gonadotropins serum levels, but not with total testosterone serum levels. Classification analyses confirmed that US textural features predicted patients' classification according to semen parameters alterations. CONCLUSIONS Radiomics texture features qualitatively describe the testicular parenchyma with objective and reliable quantitative parameters, reflecting both the testicular spermatogenic capability and the action of pituitary gonadotropins. This is an innovative model in which US texture features represent a mirror of the pituitary-gonadal homeostasis in terms of reproductive function.
Collapse
Affiliation(s)
- Bruno De Santi
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Antonio Rm Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Marilina Romeo
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Molinari
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
Bruni F. Mitochondria: From Physiology to Pathology. Life (Basel) 2021; 11:991. [PMID: 34575140 PMCID: PMC8467726 DOI: 10.3390/life11090991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, the role of mitochondria has extended beyond those tasks for which these organelles are historically known [...].
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
10
|
The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells 2021; 10:cells10081851. [PMID: 34440620 PMCID: PMC8391558 DOI: 10.3390/cells10081851] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The fundamental framework of steroidogenesis is similar across steroidogenic cells, especially in initial mitochondrial steps. For instance, the START domain containing protein-mediated cholesterol transport to the mitochondria, and its conversion to pregnenolone by the enzyme P450scc, is conserved across steroidogenic cells. The enzyme P450scc localizes to the inner mitochondrial membrane, which makes the mitochondria essential for steroidogenesis. Despite this commonality, mitochondrial structure, number, and dynamics vary substantially between different steroidogenic cell types, indicating implications beyond pregnenolone biosynthesis. This review aims to focus on the growing roles of mitochondria, autophagy and lipophagy in cholesterol uptake, trafficking and homeostasis in steroidogenic cells and consequently in steroidogenesis. We will focus on these aspects in the context of the physiological need for different steroid hormones and cell-intrinsic inherent features in different steroidogenic cell types beyond mitochondria as a mere site for the beginning of steroidogenesis. The overall goal is to provide an authentic and comprehensive review on the expanding role of steroidogenic cell-intrinsic processes in cholesterol homeostasis and steroidogenesis, and to bring attention to the scientific community working in this field on these promising advancements. Moreover, we will discuss a novel mitochondrial player, prohibitin, and its potential role in steroidogenic mitochondria and cells, and consequently, in steroidogenesis.
Collapse
|
11
|
Starovlah IM, Radovic Pletikosic SM, Kostic TS, Andric SA. Mitochondrial Dynamics Markers and Related Signaling Molecules Are Important Regulators of Spermatozoa Number and Functionality. Int J Mol Sci 2021; 22:ijms22115693. [PMID: 34071734 PMCID: PMC8199422 DOI: 10.3390/ijms22115693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Here, we study possible mechanisms of (in/sub)fertility related to the acute or repeated psychological stresses (the most common stresses in human society) by following the transcriptional profile of 22 mitochondrial dynamics/function markers and 22 signaling molecules regulating both mitochondrial dynamics and spermatozoa number/functionality. An in vivo study mimicking acute (once for 3 h) and repeated (3 h for 10 consecutive days) psychophysical stress was performed on adult rats. The analysis of hormones, the number/functionality of spermatozoa, and 44 transcriptional markers were performed on individual samples from up to 12 animals per group. Results showed that both types of stress reduced spermatozoa functionality (acute by 4.4-fold, repeated by 3.3-fold) and ATP production (acute by 2.3-fold, repeated by 14.5-fold), while only repeated stress reduces the number of spermatozoa (1.9-fold). Stress significantly disturbed transcription of 34-out-of-44 markers (77%). Mitochondrial dynamics and functionality markers: 18-out-of-22 =>82% (mitochondrial-biogenesis-markers –>6-out-of-8 =>75%; mitochondrial-fusion-markers –>3-out-of-3 =>100%; mitochondrial-fission-markers –>1-out-of-2 =>50%; mitochondrial-autophagy-markers –>3-out-of-3 =>100%; mitochondrial-functionality-markers –>5-out-of-6 =>83%). Markers of signaling pathways regulating both mitochondrial dynamics/functionality and spermatozoa number/functionality important for male (in/sub)fertility –>16-out-of-22 =>73% (cAMP-signaling-markers –>8-out-of-12 =>67%; MAPK-signaling-markers –>8-out-of-10 =>80%). Accordingly, stress-triggered changes of transcriptional profile of mitochondrial dynamics/functionality markers as well as signaling molecules regulating both mitochondrial dynamics and spermatozoa number and functionality represent adaptive mechanisms.
Collapse
|
12
|
Marinkovic DZ, Medar MLJ, Becin AP, Andric SA, Kostic TS. Growing Up Under Constant Light: A Challenge to the Endocrine Function of the Leydig Cells. Front Endocrinol (Lausanne) 2021; 12:653602. [PMID: 33796081 PMCID: PMC8008111 DOI: 10.3389/fendo.2021.653602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Abstract
The factors influencing Leydig cell maturity and the acquisition of functional capacity are incompletely defined. Here we analyzed the constant light (LL) influence on Leydig cells' endocrine function during reproductive maturation. Rats were exposed to LL from P21 to P90. Data were collected at juvenile (P35), peri/pubertal (P42, P49), and adult (P90) stages of life. The results proved the effect of LL on rats' physiology by changing of bimodal voluntary activity pattern into free-running. Additionally, the peripheral clock in Leydig cells changed in LL condition, indicating disturbed rhythm: the positive element (Bmal1) increased in pre-/pubertal but decreased in the adult period, while negative elements (Per2 and Reverba) were increased. The effects of LL were most prominent in puberty: pituitary genes encoding gonadotropic hormones (Cga, Lhb, Fshb) decreased; serum corticosterone increased, while serum androgens and mass of testicular and sex accessory organs reduced; markers of Leydig cells maturity/differentiation (Insl3, Lhcgr) and steroidogenesis-related genes (Scarb1, Star, Cyp11a1, Cyp17a1) decreased; the steroidogenic and energetic capacity of the Leydig cell mitochondria decreased; the mtDNA copy number reduced, and mitochondrial dynamics markers changed: fusion decreased (Opa1 and Mfn2), and mitophagy increased (Pink1). In adults, the negative effect of LL on mitochondrial function and steroidogenic capacity persists in adult Leydig cells while other parameters reached control values. Altogether, the results indicate that LL slows down Leydig cells' maturation by reducing the endocrine and energy capacity of cells leading to the delay of reproductive development.
Collapse
|