1
|
Sheikhnia F, Fazilat A, Rashidi V, Azizzadeh B, Mohammadi M, Maghsoudi H, Majidinia M. Exploring the therapeutic potential of quercetin in cancer treatment: Targeting long non-coding RNAs. Pathol Res Pract 2024; 260:155374. [PMID: 38889494 DOI: 10.1016/j.prp.2024.155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The escalating global incidence of cancer, which results in millions of fatalities annually, underscores the pressing need for effective pharmacological interventions across diverse cancer types. Long noncoding RNAs (lncRNAs), a class of RNA molecules that lack protein-coding capacity but profoundly impact gene expression regulation, have emerged as pivotal players in key cellular processes, including proliferation, apoptosis, metastasis, cellular metabolism, and drug resistance. Among natural compounds, quercetin, a phenolic compound abundantly present in fruits and vegetables has garnered attention due to its significant anticancer properties. Quercetin demonstrates the ability to inhibit cancer cell growth and induce apoptosis-a process often impaired in malignant cells. In this comprehensive review, we delve into the therapeutic potential of quercetin in cancer treatment, with a specific focus on its intricate interactions with lncRNAs. We explore how quercetin modulates lncRNA expression and function to exert its anticancer effects. Notably, quercetin suppresses oncogenic lncRNAs that drive cancer development and progression while enhancing tumor-suppressive lncRNAs that impede cancer growth and dissemination. Additionally, we discuss quercetin's role as a chemopreventive agent, which plays a crucial role in mitigating cancer risk. We address research challenges and future directions, emphasizing the necessity for in-depth mechanistic studies and strategies to enhance quercetin's bioavailability and target specificity. By synthesizing existing knowledge, this review underscores quercetin's promising potential as a novel therapeutic strategy in the ongoing battle against cancer, offering fresh insights and avenues for further investigation in this critical field.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Fazilat
- Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical sciences, Ilam, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Rajabi D, Khanmohammadi S, Rezaei N. The role of long noncoding RNAs in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:533-547. [PMID: 38452377 DOI: 10.1515/revneuro-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with a poor prognosis leading to death. The diagnosis and treatment of ALS are inherently challenging due to its complex pathomechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides involved in different cellular processes, incisively gene expression. In recent years, more studies have been conducted on lncRNA classes and interference in different disease pathologies, showing their promising contribution to diagnosing and treating neurodegenerative diseases. In this review, we discussed the role of lncRNAs like NEAT1 and C9orf72-as in ALS pathogenesis mechanisms caused by mutations in different genes, including TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), superoxide dismutase type 1 (SOD1). NEAT1 is a well-established lncRNA in ALS pathogenesis; hence, we elaborate on its involvement in forming paraspeckles, stress response, inflammatory response, and apoptosis. Furthermore, antisense lncRNAs (as-lncRNAs), a key group of transcripts from the opposite strand of genes, including ZEB1-AS1 and ATXN2-AS, are discussed as newly identified components in the pathology of ALS. Ultimately, we review the current standing of using lncRNAs as biomarkers and therapeutic agents and the future vision of further studies on lncRNA applications.
Collapse
Affiliation(s)
- Darya Rajabi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| |
Collapse
|
3
|
Ilieva MS. Non-Coding RNAs in Neurological and Neuropsychiatric Disorders: Unraveling the Hidden Players in Disease Pathogenesis. Cells 2024; 13:1063. [PMID: 38920691 PMCID: PMC11201512 DOI: 10.3390/cells13121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.
Collapse
Affiliation(s)
- Mirolyuba Simeonova Ilieva
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Ole Maaløes Vej 5, 3rd Floor, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Amwoma JG, Kituyi S, Wakoli DM, Ochora DO, Chemwor G, Maisiba R, Okore W, Opot B, Juma D, Muok EM, Garges EC, Egbo TE, Nyabuga FN, Andagalu B, Akala HM. Comparative analysis of peripheral whole blood transcriptome from asymptomatic carriers reveals upregulation of subsets of surface proteins implicated in Plasmodium falciparum phenotypic plasticity. Biochem Biophys Rep 2024; 37:101596. [PMID: 38146350 PMCID: PMC10749222 DOI: 10.1016/j.bbrep.2023.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
The molecular mechanism underlying Plasmodium falciparum's persistence in the asymptomatic phase of infection remains largely unknown. However, large-scale shifts in the parasites' gene expression during asymptomatic infections may enhance phenotypic plasticity, maximizing their fitness and leading to the persistence of the asymptomatic infections. To uncover these mechanisms, we aimed to identify parasite genetic factors implicated in asymptomatic infections through whole transcriptome analysis. We analyzed publicly available transcriptome datasets containing asymptomatic malaria (ASM), uncomplicated malaria (SM), and malaria-naïve (NSM) samples from 35 subjects for differentially expressed genes (DEGs) and long noncoding RNAs. Our analysis identified 755 and 1773 DEGs in ASM vs SM and NSM, respectively. These DEGs revealed sets of genes coding for proteins of unknown functions (PUFs) upregulated in ASM vs SM and ASM, suggesting their role in underlying fundamental molecular mechanisms during asymptomatic infections. Upregulated genes in ASM vs SM revealed a subset of 24 clonal variant genes (CVGs) involved in host-parasite and symbiotic interactions and modulation of the symbiont of host erythrocyte aggregation pathways. Moreover, we identified 237 differentially expressed noncoding RNAs in ASM vs SM, of which 11 were found to interact with CVGs, suggesting their possible role in regulating the expression of CVGs. Our results suggest that P. falciparum utilizes phenotypic plasticity as an adaptive mechanism during asymptomatic infections by upregulating clonal variant genes, with long noncoding RNAs possibly playing a crucial role in their regulation. Thus, our study provides insights into the parasites' genetic factors that confer a fitness advantage during asymptomatic infections.
Collapse
Affiliation(s)
- Joseph G. Amwoma
- Department of Biological Sciences, University of Embu, Kenya
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Sarah Kituyi
- Department of Biological Sciences, University of Embu, Kenya
- Forgarty International Center of the National Institutes of Health, Bethesda, MD, USA
| | - Dancan M. Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | - Douglas O. Ochora
- Department of Biological Sciences, School of Pure and Applied Sciences, Kisii University, Kenya
- DSI/NWU, Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Gladys Chemwor
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Risper Maisiba
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Winnie Okore
- Department of Biomedical Sciences and Technology, Maseno University, Kenya
| | - Benjamin Opot
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Dennis Juma
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Eric M.O. Muok
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric C. Garges
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya
| | - Timothy E. Egbo
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya
| | | | - Ben Andagalu
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Hoseah M. Akala
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| |
Collapse
|
5
|
Wu S, Nie Q, Tan S, Liao G, Lv Y, Lv C, Chen G, Liu S. The immunity modulation of transforming growth factor-β in malaria and other pathological process. Int Immunopharmacol 2023; 122:110658. [PMID: 37467691 DOI: 10.1016/j.intimp.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The main causative agent of malaria in humans is Plasmodium falciparum, which is spread through biting Anopheles mosquitoes. Immunoregulation in the host involving the pleiotropic cytokine transforming growth factor-β (TGF-β) has a vital role in controlling the immune response to P. falciparum infection. Based on a search of the published literature, this study investigated the correlation between malaria and immune cells, specifically the role of TGF-β in the immune response. The studies analyzed showed that, when present in low amounts, TGF-β promotes inflammation, but inhibits inflammation when present in high concentrations; thus, it is an essential regulator of inflammation. It has also been shown that the quantity of TGF-β produced by the host can influence how badly the parasite affects the host. Low levels of TGF-β in the host prevent the host from being able to manage the inflammation that Plasmodium causes, which results in a pathological situation that leaves the host vulnerable to fatal infection. Additionally, the amount of TGF-β fluctuates throughout the host's Plasmodium infection. At the beginning of a Plasmodium infection, TGF-β levels are noticeably increased, and as Plasmodium multiplies quickly, they start to decline, hindering further growth. In addition, it is also involved in the growth, proliferation, and operation of various types of immune cell and correlated with levels of cytokines associated with the immune response to malaria. TGF-β levels were positively connected with the anti-inflammatory cytokine interleukin-10 (IL-10), but negatively correlated with the proinflammatory cytokines interferon-γ (IFN-γ) and IL-6 in individuals with severe malaria. Thus, TGF-β might balance immune-mediated pathological damage and the regulation and clearance of infectious pathogens. Numerous domestic and international studies have demonstrated that TGF-β maintains a dynamic balance between anti-inflammation and pro-inflammation in malaria immunity by acting as an anti-inflammatory factor when inflammation levels are too high and as a pro-inflammatory factor when inflammation levels are deficient. Such information could be of relevance to the design of urgently needed vaccines and medications to meet the emerging risks associated with the increasing spread of malaria and the development of drug resistance.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin District, Shandong Province, Weifang 261061, China
| | - Shuang Tan
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Guoyan Liao
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Yinyi Lv
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Caohua Lv
- Department of Dermatology, Taizhou Second People's Hospital, No 2 Shuinan East Road, Tiantai Country, Taizhou 317200, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China.
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, China.
| |
Collapse
|
6
|
Lu Z, Xu J, Cao B, Jin C. Long non-coding RNA SOX21-AS1: A potential tumor oncogene in human cancers. Pathol Res Pract 2023; 249:154774. [PMID: 37633003 DOI: 10.1016/j.prp.2023.154774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Emerging data have proposed that the aberrant level of long noncoding RNAs (lncRNA) is related to the onset and progression of cancer. Among them, lncRNA SOX21-AS1 was shown to upregulate and seem to be a novel oncogene in various cancer, including ovarian cancer, lung cancer, breast cancer, pancreatic cancer, osteosarcoma, and melanoma. Available data indicated that SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) mostly acts as a competing endogenous RNA (ceRNA) to inhibit the level of its target microRNAs (miRNAs), leading to upregulation of their targets. In addition, SOX21-AS1 is engaged in various signaling pathways like transforming growth factor-β (TGF-β) signaling, Wnt signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Moreover, this lncRNA was revealed to be correlated with the clinicopathological features of affected patients. SOX21-AS1 was also proved to enhance the resistance of ovarian cancer cells to cisplatin chemotherapy. SOX21-AS1 is markedly associated with poor prognosis and low survival of patients, proposing that it may be a prognostic and diagnostic biomarker in cancer. Overexpression of SOX21-AS1 is related to various cancer-related pathways, like epithelial mesenchymal transition (EMT), invasion, migration, apoptosis, and cell cycle arrest. In this work, we aimed to discuss the biogenesis, function, and underlying molecular mechanism of SOX21-AS1 in cancer progression as well as its potential as a prognostic and diagnostic biomarker in human cancers.
Collapse
Affiliation(s)
- Zhengyu Lu
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Jin Xu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Binhao Cao
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Chongqiang Jin
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China.
| |
Collapse
|
7
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Sadat Razavi Z, Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242. [PMID: 37531786 DOI: 10.1016/j.biopha.2023.115242] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, IZMIR, Turkey
| | - Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
8
|
Mahanta DK, Bhoi TK, Komal J, Samal I, Nikhil RM, Paschapur AU, Singh G, Kumar PVD, Desai HR, Ahmad MA, Singh PP, Majhi PK, Mukherjee U, Singh P, Saini V, Shahanaz, Srinivasa N, Yele Y. Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs. Front Immunol 2023; 14:1169152. [PMID: 37691928 PMCID: PMC10491481 DOI: 10.3389/fimmu.2023.1169152] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Multicellular organisms are constantly subjected to pathogens that might be harmful. Although insects lack an adaptive immune system, they possess highly effective anti-infective mechanisms. Bacterial phagocytosis and parasite encapsulation are some forms of cellular responses. Insects often defend themselves against infections through a humoral response. This phenomenon includes the secretion of antimicrobial peptides into the hemolymph. Specific receptors for detecting infection are required for the recognition of foreign pathogens such as the proteins that recognize glucans and peptidoglycans, together referred to as PGRPs and βGRPs. Activation of these receptors leads to the stimulation of signaling pathways which further activates the genes encoding for antimicrobial peptides. Some instances of such pathways are the JAK-STAT, Imd, and Toll. The host immune response that frequently accompanies infections has, however, been circumvented by diseases, which may have assisted insects evolve their own complicated immune systems. The role of ncRNAs in insect immunology has been discussed in several notable studies and reviews. This paper examines the most recent research on the immune regulatory function of ncRNAs during insect-pathogen crosstalk, including insect- and pathogen-encoded miRNAs and lncRNAs, and provides an overview of the important insect signaling pathways and effector mechanisms activated by diverse pathogen invaders.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (ICFRE-AFRI), Jodhpur, Rajasthan, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ipsita Samal
- ICAR-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur, Bihar, India
| | - R. M. Nikhil
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR)-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Gaurav Singh
- The Directorate of Research, Maharana Pratap Horticultural University, Karnal, Haryana, India
| | - P. V. Dinesh Kumar
- Department of Plant Pathology University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Gujarat, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - P. P. Singh
- Department of Entomology, Tirhut College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - U. Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Pushpa Singh
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Varun Saini
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shahanaz
- Department of Entomology, College of Horticulture Mojerla, Sri Konda Laxman Telengana State Horticultural University, Wanaparthy, Telengana, India
| | - N. Srinivasa
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Yogesh Yele
- School of Crop Health Management Research, Council of Agricultural Research-National Institute of Biotic Stress Management (ICAR)- National Institute of Biotic Stress Management, Raipur, India
| |
Collapse
|
9
|
Chen H, Zhang M, Deng Y. Long Noncoding RNAs in Taxane Resistance of Breast Cancer. Int J Mol Sci 2023; 24:12253. [PMID: 37569629 PMCID: PMC10418730 DOI: 10.3390/ijms241512253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer is a common cancer in women and a leading cause of mortality. With the early diagnosis and development of therapeutic drugs, the prognosis of breast cancer has markedly improved. Chemotherapy is one of the predominant strategies for the treatment of breast cancer. Taxanes, including paclitaxel and docetaxel, are widely used in the treatment of breast cancer and remarkably decrease the risk of death and recurrence. However, taxane resistance caused by multiple factors significantly impacts the effect of the drug and leads to poor prognosis. Long noncoding RNAs (lncRNAs) have been shown to play a significant role in critical cellular processes, and a number of studies have illustrated that lncRNAs play vital roles in taxane resistance. In this review, we systematically summarize the mechanisms of taxane resistance in breast cancer and the functions of lncRNAs in taxane resistance in breast cancer. The findings provide insight into the role of lncRNAs in taxane resistance and suggest that lncRNAs may be used to develop therapeutic targets to prevent or reverse taxane resistance in patients with breast cancer.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Yongchuan Deng
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| |
Collapse
|
10
|
Li H, Wang W, Liu R, Tong B, Dai X, Lu Y, Yu Y, Dai S, Ruan L. Long non-coding RNA-mediated competing endogenous RNA regulatory network during flower development and color formation in Melastoma candidum. FRONTIERS IN PLANT SCIENCE 2023; 14:1215044. [PMID: 37575929 PMCID: PMC10415103 DOI: 10.3389/fpls.2023.1215044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
M. candidum, an evergreen shrubby flower known for its superior adaptation ability in South China, has gained increased attention in garden applications. However, scant attention has been paid to its flower development and color formation process at the non-coding RNA level. To fill this gap, we conducted a comprehensive analysis based on long non-coding RNA sequencing (lncRNA-seq), RNA-seq, small RNA sequencing (sRNA-seq), and widely targeted metabolome detection of three different flower developmental stages of M. candidum. After differentially expressed lncRNAs (DElncRNAs), differentially expressed mRNAs (DEmRNAs), differentially expressed microRNAs (DEmiRNAs), and differentially synthesized metabolites (DSmets) analyses between the different flower developmental stages, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted to identify some key genes and metabolites in flavonoid, flavone, anthocyanin, carotenoid, and alkaloid-related GO terms and biosynthetic pathways. Three direct-acting models, including antisense-acting, cis-acting, and trans-acting between lncRNAs and mRNAs, were detected to illustrate the direct function of lncRNAs on target genes during flower development and color formation. Based on the competitive endogenous RNA (ceRNA) regulatory theory, we constructed a lncRNA-mediated regulatory network composed of DElncRNAs, DEmiRNAs, DEmRNAs, and DSmets to elucidate the indirect role of lncRNAs in the flower development and color formation of M. candidum. By utilizing correlation analyses between DERNAs and DSmets within the ceRNA regulatory network, alongside verification trials of the ceRNA regulatory mechanism, the study successfully illustrated the significance of lncRNAs in flower development and color formation process. This research provides a foundation for improving and regulating flower color at the lncRNA level in M. candidum, and sheds light on the potential applications of non-coding RNA in studies of flower development.
Collapse
Affiliation(s)
- Hui Li
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wei Wang
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Rui Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Botong Tong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yan Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yixun Yu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Seping Dai
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Lin Ruan
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| |
Collapse
|
11
|
Arunima A, van Schaik EJ, Samuel JE. The emerging roles of long non-coding RNA in host immune response and intracellular bacterial infections. Front Cell Infect Microbiol 2023; 13:1160198. [PMID: 37153158 PMCID: PMC10160451 DOI: 10.3389/fcimb.2023.1160198] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) are evolutionarily conserved classes of non-coding regulatory transcripts of > 200 nucleotides in length. They modulate several transcriptional and post-transcriptional events in the organism. Depending on their cellular localization and interactions, they regulate chromatin function and assembly; and alter the stability and translation of cytoplasmic mRNAs. Although their proposed range of functionality remains controversial, there is increasing research evidence that lncRNAs play a regulatory role in the activation, differentiation and development of immune signaling cascades; microbiome development; and in diseases such as neuronal and cardiovascular disorders; cancer; and pathogenic infections. This review discusses the functional roles of different lncRNAs in regulation of host immune responses, signaling pathways during host-microbe interaction and infection caused by obligate intracellular bacterial pathogens. The study of lncRNAs is assuming significance as it could be exploited for development of alternative therapeutic strategies for the treatment of severe and chronic pathogenic infections caused by Mycobacterium, Chlamydia and Rickettsia infections, as well as commensal colonization. Finally, this review summarizes the translational potential of lncRNA research in development of diagnostic and prognostic tools for human diseases.
Collapse
Affiliation(s)
| | | | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
12
|
Editorial: Special Issue on the "Molecular Biology of Disease Vectors". Int J Mol Sci 2023; 24:ijms24032881. [PMID: 36769203 PMCID: PMC9918107 DOI: 10.3390/ijms24032881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Arthropod disease vectors not only transmit malaria but many other serious diseases, many of which are, to a greater or lesser degree, neglected [...].
Collapse
|
13
|
Vosough P, Khatami SH, Hashemloo A, Tajbakhsh A, Karimi-Fard F, Taghvimi S, Taheri-Anganeh M, Soltani Fard E, Savardashtaki A, Movahedpour A. Exosomal lncRNAs in gastrointestinal cancer. Clin Chim Acta 2023; 540:117216. [PMID: 36592922 DOI: 10.1016/j.cca.2022.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.
Collapse
Affiliation(s)
- Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
14
|
Medina JM, Abbas MN, Bensaoud C, Hackenberg M, Kotsyfakis M. Bioinformatic Analysis of Ixodes ricinus Long Non-Coding RNAs Predicts Their Binding Ability of Host miRNAs. Int J Mol Sci 2022; 23:ijms23179761. [PMID: 36077158 PMCID: PMC9456184 DOI: 10.3390/ijms23179761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ixodes ricinus ticks are distributed across Europe and are a vector of tick-borne diseases. Although I. ricinus transcriptome studies have focused exclusively on protein coding genes, the last decade witnessed a strong increase in long non-coding RNA (lncRNA) research and characterization. Here, we report for the first time an exhaustive analysis of these non-coding molecules in I. ricinus based on 131 RNA-seq datasets from three different BioProjects. Using this data, we obtained a consensus set of lncRNAs and showed that lncRNA expression is stable among different studies. While the length distribution of lncRNAs from the individual data sets is biased toward short length values, implying the existence of technical artefacts, the consensus lncRNAs show a more homogeneous distribution emphasizing the importance to incorporate data from different sources to generate a solid reference set of lncRNAs. KEGG enrichment analysis of host miRNAs putatively targeting lncRNAs upregulated upon feeding showed that these miRNAs are involved in several relevant functions for the tick-host interaction. The possibility that at least some tick lncRNAs act as host miRNA sponges was further explored by identifying lncRNAs with many target regions for a given host miRNA or sets of host miRNAs that consistently target lncRNAs together. Overall, our findings suggest that lncRNAs that may act as sponges have diverse biological roles related to the tick–host interaction in different tissues.
Collapse
Affiliation(s)
- José María Medina
- Departamentode Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratorio de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, 18016 Granada, Spain
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Michael Hackenberg
- Departamentode Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratorio de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, 18016 Granada, Spain
- Correspondence: (M.H.); (M.K.)
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
- Correspondence: (M.H.); (M.K.)
| |
Collapse
|
15
|
Leija-Montoya AG, González-Ramírez J, Martínez-Coronilla G, Mejía-León ME, Isiordia-Espinoza M, Sánchez-Muñoz F, Chávez-Cortez EG, Pitones-Rubio V, Serafín-Higuera N. Roles of microRNAs and Long Non-Coding RNAs Encoded by Parasitic Helminths in Human Carcinogenesis. Int J Mol Sci 2022; 23:ijms23158173. [PMID: 35897749 PMCID: PMC9331937 DOI: 10.3390/ijms23158173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
Infectious agents such as viruses, bacteria, and parasites can lead to cancer development. Infection with the helminthic parasite Schistosoma haematobium can cause cancer of the urinary bladder in humans, and infection with the parasites Clonorchis sinensis and Opisthorchis viverrini can promote cholangiocarcinoma. These three pathogens have been categorized as “group 1: carcinogenic to humans” by the International Agency for Research on Cancer (IARC). Additionally, the parasite Schistosoma japonicum has been associated with liver and colorectal cancer and classified as “group 2B: possibly carcinogenic to humans”. These parasites express regulatory non-coding RNAs as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which modulate genic expression in different biological processes. In this review, we discuss the potential roles of miRNAS and lncRNAs encoded by helminthic parasites that are classified by the IARC as carcinogenic and possibly carcinogenic to humans. The miRNAs of these parasites may be involved in carcinogenesis by modulating the biological functions of the pathogen and the host and by altering microenvironments prone to tumor growth. miRNAs were identified in different host fluids. Additionally, some miRNAs showed direct antitumoral effects. Together, these miRNAs show potential for use in future therapeutic and diagnostic applications. LncRNAs have been less studied in these parasites, and their biological effects in the parasite–host interaction are largely unknown.
Collapse
Affiliation(s)
- Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico;
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - María Esther Mejía-León
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Mario Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, JAL, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlapan 140080, DF, Mexico;
| | - Elda Georgina Chávez-Cortez
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Viviana Pitones-Rubio
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Nicolas Serafín-Higuera
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
- Correspondence:
| |
Collapse
|
16
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Singh D, Assaraf YG, Gacche RN. Long Non-coding RNA Mediated Drug Resistance in Breast Cancer. Drug Resist Updat 2022; 63:100851. [DOI: 10.1016/j.drup.2022.100851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Moure UAE, Tan T, Sha L, Lu X, Shao Z, Yang G, Wang Y, Cui H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front Immunol 2022; 13:856457. [PMID: 35464405 PMCID: PMC9020863 DOI: 10.3389/fimmu.2022.856457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Insects are by far the most abundant and diverse living organisms on earth and are frequently prone to microbial attacks. In other to counteract and overcome microbial invasions, insects have in an evolutionary way conserved and developed immune defense mechanisms such as Toll, immune deficiency (Imd), and JAK/STAT signaling pathways leading to the expression of antimicrobial peptides. These pathways have accessory immune effector mechanisms, such as phagocytosis, encapsulation, melanization, nodulation, RNA interference (RNAi), lysis, autophagy, and apoptosis. However, pathogens evolved strategies that circumvent host immune response following infections, which may have helped insects further sophisticate their immune response mechanisms. The involvement of ncRNAs in insect immunity is undeniable, and several excellent studies or reviews have investigated and described their roles in various insects. However, the functional analyses of ncRNAs in insects upon pathogen attacks are not exhaustive as novel ncRNAs are being increasingly discovered in those organisms. This article gives an overview of the main insect signaling pathways and effector mechanisms activated by pathogen invaders and summarizes the latest findings of the immune modulation role of both insect- and pathogen-encoded ncRNAs, especially miRNAs and lncRNAs during insect–pathogen crosstalk.
Collapse
Affiliation(s)
- Ulrich Aymard Ekomi Moure
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| | - Tingshan Tan
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lin Sha
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoqin Lu
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Zhi Shao
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Department of Gastrointestinal Surgery, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
20
|
Leitner M, Etebari K, Asgari S. Transcriptional response of Wolbachia-transinfected Aedes aegypti mosquito cells to dengue virus at early stages of infection. J Gen Virol 2022; 103:001694. [PMID: 35006065 PMCID: PMC8895618 DOI: 10.1099/jgv.0.001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus-host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia-transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia-transinfected Ae. aegypti's initial virus recognition and transcriptional response to DENV infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|