1
|
Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, Mageed SSA, Moussa R, Mohammed OA, Abdel-Reheim MA, Doghish AS. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03736-x. [PMID: 39825964 DOI: 10.1007/s00210-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 01/20/2025]
Abstract
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy. The capacity of phytochemical and nutraceutical chemicals to repress oncogenic lncRNAs and activate tumor suppressor lncRNAs has garnered significant attention as a possible strategy to diminish the development, proliferation, metastasis, and invasion of cancer cells. A potential technique to treat cancer and enhance the sensitivity of cancer cells to existing conventional therapies is the use of phytochemicals with anticancer characteristics. Functional studies indicate that lncRNAs modulate drug resistance, stemness, invasion, metastasis, angiogenesis, and proliferation via interactions with tumor suppressors and oncoproteins. Among them, numerous lncRNAs, such as HOTAIR, PlncRNA1, GAS5, MEG3, LincRNA-21, and POTEF-AS1, support the development of PCa through many molecular mechanisms, including modulation of tumor suppressors and regulation of various signal pathways like PI3K/Akt, Bax/Caspase 3, P53, MAPK cascade, and TGF-β1. Other lncRNAs, in particular, MALAT-1, CCAT2, DANCR, LncRNA-ATB, PlncRNA1, LincRNA-21, POTEF-AS1, ZEB1-AS1, SChLAP1, and H19, are key players in regulating the aforementioned processes. Natural substances have shown promising anticancer benefits against PCa by altering essential signaling pathways. The overexpression of some lncRNAs is associated with advanced TNM stage, metastasis, chemoresistance, and reduced survival. LncRNAs possess crucial clinical and transitional implications in PCa, as diagnostic and prognostic biomarkers, as well as medicinal targets. To impede the progression of PCa, it is beneficial to target aberrant long non-coding RNAs using antisense oligonucleotides or small interfering RNAs (siRNAs). This prevents them from transmitting harmful messages. In summary, several precision medicine approaches may be used to rectify dysfunctional lncRNA regulatory circuits, so improving early PCa detection and eventually facilitating the conquest of this lethal disease. Due to their presence in biological fluids and tissues, they may serve as novel biomarkers. Enhancing PCa treatments mitigates resistance to chemotherapy and radiation.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26Th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Rajabi A, Saber A, Kluiver J, van den Berg A, Hosseinpourfeizi MA, Safaralizadeh R. NEAT1 and CHROMR lncRNAs: a promising diagnostic tool for diffuse large B-cell lymphoma especially in elderly patients. Biomark Med 2024; 18:685-693. [PMID: 39263799 PMCID: PMC11404575 DOI: 10.1080/17520363.2024.2389036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Long non-coding (lnc) RNAs have crucial regulatory roles in molecular pathways, and their dysregulation is associated with the pathogenesis of malignancies such as Diffuse large B-cell lymphoma (DLBCL). Therefore, we aimed to study the NEAT1 and CHROMR expression in DLBCL and explore their association with clinicopathological characteristics.Methods & materials: DLBCL and non-tumor lymph node specimens were obtained to assess the expression levels.Results: NEAT1 and CHROMR expressions were significantly increased in DLBCL, and were linked with the age of DLBCL patients (aged >60). NEAT1 and CHROMR overexpression may serve as moderate-to-good diagnostic biomarkers, with NEAT1 and CHROMR exhibiting area under the curve values of 0.781 and 0.831, respectively.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Aged
- Female
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Adult
- Gene Expression Regulation, Neoplastic
- Aged, 80 and over
- Prognosis
- ROC Curve
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166/15731, Iran
| | - Ali Saber
- Dr. Saber Medical Genetics Laboratory, Almas Complex, Namaz Blvd., Golsar, Rasht, Gilan, 4165685538, Iran
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166/15731, Iran
| |
Collapse
|
3
|
Xu Z, Nemati S. Long intergenic non-protein coding RNA 115 (Linc00115): A notable oncogene in human malignancies. Gene 2024; 897:148066. [PMID: 38070791 DOI: 10.1016/j.gene.2023.148066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Long noncoding RNAs (LncRNAs) are RNA transcripts ranging from 200 to 1000 nucleotides that have emerged as critical regulators of gene expression. Growing evidence highlights their involvement in tumor development. In particular, long intergenic non-protein coding RNA115 (Linc00115) has been identified as an oncogene across various human malignancies, with aberrant expression strongly linked to poor clinical outcomes in cancer patients. This review aims to delve into the expression patterns of Linc00115 and elucidate the underlying molecular mechanisms behind its oncogenic properties. Moreover, we discuss the potential utility of Linc00115 as a valuable diagnostic and prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No. 1 Hospital, Wuhan Hubei, 430022, China.
| | - Sara Nemati
- Department of Medical Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
4
|
Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I, Alzarea SI, Alfawaz Altamimi AS, Kukreti N, Chakraborty A, Singh SK, Dua K. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review. EXCLI JOURNAL 2024; 23:34-52. [PMID: 38343745 PMCID: PMC10853633 DOI: 10.17179/excli2023-6553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 09/05/2024]
Abstract
This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelam Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Taheri M, Badrlou E, Hussen BM, Kashi AH, Ghafouri-Fard S, Baniahmad A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front Oncol 2023; 13:1123101. [PMID: 37025585 PMCID: PMC10070735 DOI: 10.3389/fonc.2023.1123101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulatory transcripts with essential roles in the pathogenesis of almost all types of cancers, including prostate cancer. They can act as either oncogenic lncRNAs or tumor suppressor ones in prostate cancer. Small nucleolar RNA host genes are among the mostly assessed oncogenic lncRNAs in this cancer. PCA3 is an example of oncogenic lncRNAs that has been approved as a diagnostic marker in prostate cancer. A number of well-known oncogenic lncRNAs in other cancers such as DANCR, MALAT1, CCAT1, PVT1, TUG1 and NEAT1 have also been shown to act as oncogenes in prostate cancer. On the other hand, LINC00893, LINC01679, MIR22HG, RP1-59D14.5, MAGI2-AS3, NXTAR, FGF14-AS2 and ADAMTS9-AS1 are among lncRNAs that act as tumor suppressors in prostate cancer. LncRNAs can contribute to the pathogenesis of prostate cancer via modulation of androgen receptor (AR) signaling, ubiquitin-proteasome degradation process of AR or other important signaling pathways. The current review summarizes the role of lncRNAs in the evolution of prostate cancer with an especial focus on their importance in design of novel biomarker panels and therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
An Updated Review of Contribution of Long Noncoding RNA-NEAT1 to the Progression of Human Cancers. Pathol Res Pract 2023; 245:154380. [PMID: 37043964 DOI: 10.1016/j.prp.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) present pivotal roles in cancer tumorigenesis and progression. Recently, nuclear paraspeckle assembly transcript 1 (NEAT1) as a lncRNA has been shown to mediate cell proliferation, migration, and EMT in tumor cells. NEAT1 by targeting several miRNAs/mRNA axes could regulate cancer cell behavior. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of some human cancers. In this review, we summarized various NEAT1-related signaling pathways that are critical in cancer initiation and progression.
Collapse
|
7
|
Feng T, Song C, Wu Z, Zhao K, Ye S. Role of lncRNA MIAT/miR-361-3p/CCAR2 in prostate cancer cells. Open Med (Wars) 2022; 17:1528-1537. [PMID: 36245704 PMCID: PMC9520331 DOI: 10.1515/med-2021-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
The study was aimed to investigate the role and mechanism of long non-coding RNAs (lncRNA) myocardial infarction-associated transcript (MIAT) in prostate cancer. The relationships between lncRNA MIAT and miR-361-3p, miR-361-3p and cell cycle and apoptosis regulator 2 (CCAR2) were predicted by StarBase and TargetScan, and verified by dual-luciferase reporter assay and RNA pull-down assay. Quantitative real-time PCR assay was performed to detect the mRNA expression of lncRNA MIAT, miR-361-3p, CCAR2, Bax, and Bcl-2 in the prostate cancer tissues or cells. The protein levels of CCAR2, Bax, and Bcl-2 were detected by Western blot analysis. The cell viability and apoptosis were detected by MTT assay and Flow cytometry analysis, respectively. lncRNA MIAT was upregulated, while miR-361 was downregulated in the prostate cancer tissues and Du145 cells. lncRNA MIAT negatively regulated miR-361-3p expression in Du145 cells. Downregulating lncRNA MIAT decreased the cell viability, induced the cell apoptosis, increased Bax expression, and decreased Bcl-2 expression in Du145 cells, while the effects were reversed by downregulating miR-361-3p or CCAR2 upregulation. Moreover, CCAR2 upregulation reversed the effects of miR-361-3p upregulation on Du145 cell viability and apoptosis. In conclusion, lncRNA MIAT participated in prostate cancer by regulating cell proliferation and apoptosis via miR-361-3p/CCAR2 axis.
Collapse
Affiliation(s)
- Tao Feng
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Chunyu Song
- Department of Endocrine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhiyong Wu
- Department of Nail and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ke Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Wuhan, 430014, China
| | - Shenglan Ye
- Department of Respiratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Wuhan, 430014, China
| |
Collapse
|
8
|
Expression and Clinical Significance of lncRNA NEAT1 in Patients with Spinal Tuberculosis. DISEASE MARKERS 2022; 2022:5748756. [PMID: 35465262 PMCID: PMC9023229 DOI: 10.1155/2022/5748756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Background Spinal tuberculosis (STB) often leads to irreversible neurological injury, resulting in serious social and economic problems. With the emergence of drug resistance, the management becomes even more challenging, given the treatment courses are generally longer for skeletal than pulmonary tuberculosis (PTB). The development and validation of nonsputum biomarkers for diagnosis and tailoring of treatment duration to enable personalized and evidence-based management of such diseases to improve treatment outcomes is being called for globally. Studies have demonstrated that lncRNA NEAT1 was highly expressed in pulmonary tuberculosis (TB) and was related to its progression and recovery. However, the expression and clinical significance of lncRNA NEAT1 in STB remains unclear. Methods The relative expression of lncRNA NEAT1 was quantified by relative real-time reverse transcription PCR (RT-PCR). The prognostic value was assessed by receiver-operating characteristic (ROC) curve analysis. Pearson and Spearman correlation coefficient and chi-square test were used to analyze the correlation between the lncRNA NEAT1 expression and the clinical characteristics. Univariate and multivariate logistic regression analyses were used to analyze independent predictors of STB recurrence. Results Compared with normal healthy individuals, the expression level of lncRNA NEAT1 in peripheral blood and granulomatous tissues of STB patients was significantly increased. The results of the in vitro Mycobacterium tuberculosis- (Mtb-) infected cell model showed that the expression level of lncRNA NEAT1 was significantly upregulated in macrophages infected with Mtb, and the difference was statistically significant compared with Mtb-uninfected group. The expression level of lncRNA NEAT1 in granulomatous tissue of STB was significantly higher than that in peripheral blood. The expression of lncRNA NEAT1 was related to segments of the lesions, paraspinal abscesses, anti-TB treatment, drug resistance, interleukin-6 (IL-6), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Multivariate analysis results showed that relatively high expression of lncRNA NEAT1_1, the shorter transcript of the NEAT1 gene, was an independent prognostic factor of STB outcome. Conclusion LncRNA NEAT1 was highly expressed in peripheral blood mononuclear cells (PBMCs) and granulomatous tissue from patients with STB, as well as in Mtb-infected THP-1 cell lines. LncRNA NEAT1 expression was significantly associated with clinical characteristics (paraspinal abscesses, segments of the lesions and anti-TB treatment, IL-6, CRP, and ESR) of patients in STB. Increased expression of lncRNA NEAT1_1 predicted good prognosis of STB and might become a prognostic biomarker for STB.
Collapse
|
9
|
Sabol M, Calleja-Agius J, Di Fiore R, Suleiman S, Ozcan S, Ward MP, Ozretić P. (In)Distinctive Role of Long Non-Coding RNAs in Common and Rare Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13205040. [PMID: 34680193 PMCID: PMC8534192 DOI: 10.3390/cancers13205040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Rare ovarian cancers (ROCs) are OCs with an annual incidence of fewer than 6 cases per 100,000 women. They affect women of all ages, but due to their low incidence and the potential clinical inexperience in management, there can be a delay in diagnosis, leading to a poor prognosis. The underlying causes for these tumors are varied, but generally, the tumors arise due to alterations in gene/protein expression in cellular processes that regulate normal proliferation and its checkpoints. Dysregulation of the cellular processes that lead to cancer includes gene mutations, epimutations, non-coding RNA (ncRNA) regulation, posttranscriptional and posttranslational modifications. Long non-coding RNA (lncRNA) are defined as transcribed RNA molecules, more than 200 nucleotides in length which are not translated into proteins. They regulate gene expression through several mechanisms and therefore add another level of complexity to the regulatory mechanisms affecting tumor development. Since few studies have been performed on ROCs, in this review we summarize the mechanisms of action of lncRNA in OC, with an emphasis on ROCs.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey;
- Cancer Systems Biology Laboratory (CanSyl), Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-(1)-4571292
| |
Collapse
|