1
|
Siegel N, Henkel TW, Adams S, Cooper J, Aime MC. New Cortinariaceae species associated with Dicymbe, Aldina, and Pakaraimaea in Guyana. Mycologia 2024; 116:848-864. [PMID: 38990778 DOI: 10.1080/00275514.2024.2367399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Species of the ectomycorrhizal (ECM) family Cortinariaceae (Agaricales, Agaricomycetes, Basidiomycota) have long been considered impoverished or absent from lowland tropical rainforests. Several decades of collecting in forests dominated by ECM trees in South America's Guiana Shield is countering this view, with discovery of numerous Cortinariaceae species. To date, ~12 morphospecies of this family have been found in the central Pakaraima Mountains of Guyana. Here, we describe three of these as new species of Cortinarius and two as new species of Phlegmacium from forests dominated by the ECM tree genera Dicymbe (Fabaceae subfam. Detarioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Cistaceae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species.
Collapse
Affiliation(s)
- Noah Siegel
- 32 Prospect Hill Road, Royalston, Massachusetts 01368
| | - Terry W Henkel
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, California 95521
| | | | - Jerry Cooper
- Manaaki Whenua-Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
2
|
Rugolo M, Mascoloti Spréa R, Dias MI, Pires TCSP, Añibarro-Ortega M, Barroetaveña C, Caleja C, Barros L. Nutritional Composition and Bioactive Properties of Wild Edible Mushrooms from Native Nothofagus Patagonian Forests. Foods 2022; 11:foods11213516. [PMID: 36360128 PMCID: PMC9654758 DOI: 10.3390/foods11213516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Nothofagus forests of the Andean Patagonian region are home to numerous wild edible mushroom (WEM) species with interesting organoleptic characteristics, although many of them have unknown nutritional and nutraceutical profiles. The proximal composition, fatty and organic acids, soluble sugars, phenolic compounds, ergosterol, as well as antioxidant and antimicrobial activity of 17 WEMs were analyzed. Carbohydrates, the most abundant macronutrients, varied between 49.00 g/100 g dw (C. magellanicus) and 89.70 g/100 g dw (F. antarctica). Significantly higher values were found for total fat in G. gargal (5.90 g/100 g dw) followed by A. vitellinus (4.70 g/100 g dw); for crude protein in L. perlatum (36.60 g/100 g dw) followed by L. nuda (30.30 g/100 g dw); and for energy in G. gargal (398 Kcal/100g) and C. hariotii (392 Kcal/100g). The most effective extracts regarding the TBARS antioxidant capacity were those of Ramaria. This is the first time that a study was carried out on the chemical composition of G. sordulenta, C. xiphidipus, F. pumiliae, and L. perlatum. The promotion of sustainable use of WEMs, including their incorporation in functional diets that choose WEMs as nutritious, safe, and healthy foods, and their use in an identity mycogastronomy linked to tourism development, requires the detailed and precise nutritional and nutraceutical information of each species.
Collapse
Affiliation(s)
- Maximiliano Rugolo
- CONICET/Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Ruta 259 km 3.4, Esquel 9200, Chubut, Argentina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Labortório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rafael Mascoloti Spréa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Labortório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Labortório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Labortório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Labortório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carolina Barroetaveña
- CONICET/Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Ruta 259 km 3.4, Esquel 9200, Chubut, Argentina
- Correspondence: (C.B.); (C.C.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Labortório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (C.B.); (C.C.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Labortório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Jiawen C, Yuan W, Xin Z, Junjie G, Xing H, Jinglei X. Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. ENVIRONMENTAL MICROBIOME 2022; 17:52. [PMID: 36271421 PMCID: PMC9585767 DOI: 10.1186/s40793-022-00446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rhizosphere fungi and endophytic fungi play key roles in plant growth and development; however, their role in the growth of Epimedium koreanum Nakai at different stages remains unclear. Here, we used the Illumina MiSeq system, a high-throughput sequencing technology, to study the endophytic fungi and rhizosphere microbiome of Korean Epimedium. RESULTS Epimedium koreanum Nakai rhizosphere soil and leaves had highly diverse fungal communities during the growth process. The relative abundance of soil fungi in the rhizosphere stage was higher than that of leaf endophytic fungi in the early growth stage, but the overall abundance was basically equal. Sebacina is a significantly divergent fungal genera, and Sebacina sp. are present among leaf fungi species in the rhizosphere soil of Epimedium koreanum Nakai. Sebacina sp. can move to each other in rhizosphere soil fungi and leaf endophytes. VIF (variance inflation factor) analysis showed that soluble salt, whole nitrogen, alkaline lysis nitrogen, whole phosphorus, total potassium, and fast-acting potassium are useful environmental factors for rhizosphere soil and leaf endophytic fungi: potassium, total nitrogen, whole phosphorus, and three environmental factors were significantly and positively associated with the relative abundance of Sebacina sp. CONCLUSIONS (1) This study is the first to clarify the species diversity of fungi in Epimedium koreanum Nakai leaf and rhizosphere soil. (2) Different fungal communities of rhizosphere soil fungi and leaf endophytic fungi at different growth stages of Epimedium koreanum Nakai were examined. (3) Sebacina sp. can move to each other between rhizosphere soil fungi and leaf endophytic fungi. (4) Nitrogen, phosphorus and potassium elements in the environment have a significant positive effect on the relative abundance of Sebacina sp.
Collapse
Affiliation(s)
- Chen Jiawen
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Wu Yuan
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Zhuang Xin
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Guo Junjie
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Hu Xing
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Xiao Jinglei
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| |
Collapse
|
4
|
Siewert B, Ćurak G, Hammerle F, Huymann L, Fiala J, Peintner U. The photosensitizer emodin is concentrated in the gills of the fungus Cortinarius rubrophyllus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112390. [PMID: 35123160 DOI: 10.1016/j.jphotobiol.2022.112390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/08/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
The colorful agaricoid fruiting bodies of dermocyboid Cortinarii owe their magnificent hue to a mixture of anthraquinone (AQ) pigments. Recently, it was discovered that some of these fungal anthraquinones have an impressive photopharmacological effect. The question, therefore, arises as to whether these pigments are also of ecological or functional significance. According to the optimal defense hypothesis, toxic molecules should be enriched in spore-producing structures, such as the gills of agarics. To test this hypothesis, we studied the distribution of fungal AQs in the fruiting body of Cortinarius rubrophyllus. The fungus belongs to the well-studied Cortinarius subgenus Dermocybe but has not been chemically characterized. Here, we report on the pigment profile of this beautiful fungus and focus on the distribution of anthraquinone pigments in the fruiting body for the first time. Here it is statistically confirmed that the potent photosensitizer emodin is significantly enriched in the gills. Furthermore, we show that the extract is photoactive against cancer cells and bacteria.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Gabrijela Ćurak
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Fabian Hammerle
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lesley Huymann
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria; Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Johannes Fiala
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria; Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|