1
|
Peng J, Li H, Tong F, Hu J, Li M, Chen G, Liu D, Liu J, Wang R, Xu H, Li X, Zhong X, Yao J, Cao B. Methylation changes of liver DNA during the formation of gallstones. Epigenomics 2024; 16:529-547. [PMID: 38444389 PMCID: PMC11160444 DOI: 10.2217/epi-2023-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Aim: To explore the overall methylation changes in liver tissues during the formation of gallstones, as well as the key pathways and genes involved in the process. Methods: Reduced-representation bisulfite sequencing and RNA sequencing were conducted on the liver tissues of mice with gallstones and control normal mice. Results: A total of 8705 differentially methylated regions in CpG and 1410 differentially expressed genes were identified. The joint analysis indicated that aberrant DNA methylation may be associated with dysregulated gene expression in key pathways such as cholesterol metabolism and bile secretion. Conclusion: We propose for the first time that methylation changes in some key pathway genes in liver tissue may be involved in the formation of gallstones.
Collapse
Affiliation(s)
- Junbin Peng
- Medical School of Anhui University Of Science & Technology, Huainan, 232001, Anhui, China
| | - Haojie Li
- Medical School of Anhui University Of Science & Technology, Huainan, 232001, Anhui, China
| | - Fang Tong
- Medical School of Anhui University Of Science & Technology, Huainan, 232001, Anhui, China
| | - Jinlong Hu
- Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, Anhui, China
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, China
| | - Min Li
- Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, Anhui, China
| | - Gan Chen
- Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, Anhui, China
| | - Dongquan Liu
- Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, Anhui, China
| | - Jinshan Liu
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Wang
- Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Hongyu Xu
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuanxuan Li
- Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Xinguo Zhong
- Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, Anhui, China
| | - Jiaming Yao
- Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, Anhui, China
| | - Baoqiang Cao
- Medical School of Anhui University Of Science & Technology, Huainan, 232001, Anhui, China
- Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, Anhui, China
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People’s Hospital, Hefei, 230041, China
| |
Collapse
|
2
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Amentoflavone-Enriched Selaginella rossii Warb. Suppresses Body Weight and Hyperglycemia by Inhibiting Intestinal Lipid Absorption in Mice Fed a High-Fat Diet. Life (Basel) 2022; 12:life12040472. [PMID: 35454963 PMCID: PMC9024644 DOI: 10.3390/life12040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Many Selaginellaceae species are used as traditional medicines in Asia. This study is the first to investigate the anti-obesity and anti-diabetic effects of Selaginella rossii (SR) in high-fat diet (HFD)–fed C57BL/6J mice. Seven-day oral administration of ethanol extract (100 mg/kg/day) or ethyl acetate (EtOAc) extract (50 mg/kg/day) from SR improved oral fat tolerance by inhibiting intestinal lipid absorption; 10-week long-term administration of the EtOAc extract markedly reduced HFD-induced body weight gain and hyperglycemia by reducing adipocyte hypertrophy, glucose levels, HbA1c, and plasma insulin levels. Treatment with SR extracts reduced the expression of intestinal lipid absorption-related genes, including Cd36, fatty acid-binding protein 6, ATP-binding cassette subfamily G member 8, NPC1 like intracellular cholesterol transporter 1, and ATP-binding cassette subfamily A member 1. In addition, the EtOAc extract increased the expression of protein absorption–related solute carrier family genes, including Slc15a1, Slc8a2, and Slc6a9. SR extracts reduced HFD-induced hepatic steatosis by suppressing fatty acid transport to hepatocytes and hepatic lipid accumulation. Furthermore, amentoflavone (AMF), the primary compound in SR extracts, reduced intestinal lipid absorption by inhibiting fatty acid transport in HFD-fed mice. AMF-enriched SR extracts effectively protected against HFD-induced body weight gain and hyperglycemia by inhibiting intestinal lipid absorption.
Collapse
|