1
|
Roca Paixao JF, Déléris A. Epigenetic control of T-DNA during transgenesis and pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae583. [PMID: 39498848 DOI: 10.1093/plphys/kiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixao
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Angélique Déléris
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Veremeichik GN, Solomatina TO, Khopta AA, Brodovskaya EV, Gorpenchenko TY, Grigorchuk VP, Bulgakov DV, Bulgakov VP. Agropine-type rolA modulates ROS homeostasis in an auxin-dependent manner in rolA-expressing cell cultures of Rubia cordifolia L. PLANTA 2024; 261:20. [PMID: 39714533 DOI: 10.1007/s00425-024-04597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
MAIN CONCLUSION Long-term cultured calli may experience a biosynthetic shift due to the IAA-dependent expression of the rolA gene, which also affects ROS metabolism. The "hairy root" syndrome is caused by the root-inducing Ri-plasmid of Rhizobium rhizogenes, also known as Agrobacterium rhizogenes. The Ri-plasmid contains genes known as rol genes or root oncogenic loci, which promote root development. The important implications of the rolA gene from the T-DNA include reduced plant size, resistance to infections, and the activation of specialised metabolism. Nevertheless, rolA does not belong to the plast gene group because its function is still uncertain. Recent investigations have shown two important effects of the rolA gene. First, the production of secondary metabolites has changed in long-term cultivated rolA-transgenic calli of Rubia cordifolia L. Second, the expression of both the rolA and rolB genes has a strong auxin-dependent antagonistic effect on reactive oxygen species (ROS) homeostasis. In this work, we attempted to elucidate two rolA gene phenomena: what caused the secondary metabolism of long-term cultured calli to change? How does the individual expression of the rolA gene affect ROS homeostasis? We analysed SNPs in the 5' untranslated region and coding region of the rolA gene. These mutations do not affect the known essential amino acids of the RolA proteins. Notably, in the promoter of the rolA gene, an ACTTTA motif for auxin-mediated transcription factors was identified. Using two separate cell cultures, we demonstrated the strong auxin dependence of rolA gene expression. The expression of genes involved in ROS metabolism decreased in response to an auxin-mediated increase in rolA gene expression. Two assumptions can be made. The long-term cultivation of calli may cause changes in the hormonal state of the culture over time, which may modulate the action of the RolA protein. Moreover, auxin-dependent expression of the rolA gene led to a decrease in ROS metabolism. It can be assumed that the antagonistic interaction between rolA and rolB prevents strong rolB-induced auxin sensitivity and oxidative bursts to balance the cell state.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia.
| | - Taisia O Solomatina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Anastasia A Khopta
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Evgenia V Brodovskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Tatiana Yu Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Valeria P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| |
Collapse
|
3
|
Tkach N, Rasti SL, Röser M. Disentangling conflicting molecular phylogenetic signals in nuclear and plastid DNA of the western Eurasian-Mediterranean grass genus Cynosurus and its relatives (Poaceae subtribes Cynosurinae and Parapholiinae). Mol Phylogenet Evol 2024; 201:108204. [PMID: 39332700 DOI: 10.1016/j.ympev.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The western Eurasian-Mediterranean grass genus Cynosurus, comprising about 11 species, is morphologically well delimited by the regular occurrence of conspicuous sterile spikelets distal to the fertile ones on the outer, abaxial side of the inflorescences. However, our molecular phylogenetic study using nuclear ribosomal DNA (ITS, ETS) and plastid DNA sequences (trnL-F, matK) has shown that the genus is not monophyletic in its current delimitation, but consists of three distinct lineages. These lineages were found to be closely related to a group of 6-7 genera taxonomically assigned to the subtribe Parapholiinae. These Parapholiinae genera were consistently monophyletic in our analyses, but the suggested relationships to the three lineages of Cynosurus varied depending on the particular DNA region examined. This was the case for both plastid and nuclear DNA, with cytonuclear discordance and 'chloroplast capture' indicating earlier hybridization. Interestingly, hybridization also proved to be the most likely explanation even with regard to the 18S-26S cistrons of the nuclear ribosomal DNA, where an exceptional evolutionary divergence between ITS and ETS was found. The results highlight and illustrate the important role of hybridization in the evolution of grasses. In terms of taxonomy, our findings argue against maintaining a polyphyletic genus Cynosurus s.l. but instead argue for dividing it into three monophyletic genera: Cynosurus s.s., Falona, which is reestablished here, and Ciliochloa, which is described as a new genus. In addition, it is proposed that the two subtribes Cynosurinae and Parapholiinae be combined into a single subtribe Cynosurinae, which is also monophyletic. The possible genetic background of the formation of sterile spikelets and the occasional occurrence of inflorescences with consistently fertile spikelets are discussed. New combinations are Ciliochloa effusa, C. effusa var. obliquata, C. effusa var. fertilis, C. elegans, C. gracilis, C. turcomanica and Falona colorata.
Collapse
Affiliation(s)
- Natalia Tkach
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06108 Halle (Saale), Germany.
| | - Sirus Leonard Rasti
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06108 Halle (Saale), Germany
| | - Martin Röser
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06108 Halle (Saale), Germany.
| |
Collapse
|
4
|
Koleva DT, Bengochea AW, Mellor SB, Ochoa-Fernandez R, Nelson DR, Møller BL, Gillam EMJ, Sørensen M. Sequence diversity in the monooxygenases involved in oxime production in plant defense and signaling: a conservative revision in the nomenclature of the highly complex CYP79 family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1236-1256. [PMID: 39436807 DOI: 10.1111/tpj.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Cytochrome P450 monooxygenases of the CYP79 family catalyze conversion of specific amino acids into oximes feeding into a variety of metabolic plant pathways. Here we present an extensive phylogenetic tree of the CYP79 family built on carefully curated sequences collected across the entire plant kingdom. Based on a monophyletic origin of the P450s, a set of evolutionarily distinct branches was identified. Founded on the functionally characterized CYP79 sequences, sequence features of the individual substrate recognition sites (SRSs) were analyzed. Co-evolving amino acid residues were identified using co-evolutionary sequence analysis. SRS4 possesses a specific sequence pattern when tyrosine is a substrate. Except for the CYP79Cs and CYP79Fs, substrate preferences toward specific amino acids could not be assigned to specific subfamilies. The highly diversified CYP79 tree, reflecting recurrent independent evolution of CYP79s, may relate to the different roles of oximes in different plant species. The sequence differences across individual CYP79 subfamilies may facilitate the in vivo orchestration of channeled metabolic pathways based on altered surface charge domains of the CYP79 protein. Alternatively, they may serve to optimize dynamic interactions with oxime metabolizing enzymes to enable optimal ecological interactions. The outlined detailed curation of the CYP79 sequences used for building the phylogenetic tree made it appropriate to make a conservative phylogenetic tree-based revision of the naming of the sequences within this highly complex cytochrome P450 family. The same approach may be used in other complex P450 subfamilies. The detailed phylogeny of the CYP79 family will enable further exploration of the evolution of function in these enzymes.
Collapse
Affiliation(s)
- Donka Teneva Koleva
- Plant Biochemistry Laboratory, PLEN, University of Copenhagen, Copenhagen, Denmark
| | - Anthony W Bengochea
- School of Chemistry and Molecular Biosciences, University of Queensland, The University of Queensland, Brisbane, Queensland, Australia
| | - Silas B Mellor
- Plant Biochemistry Laboratory, PLEN, University of Copenhagen, Copenhagen, Denmark
| | | | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, Tennessee, USA
| | | | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, The University of Queensland, Brisbane, Queensland, Australia
| | - Mette Sørensen
- Plant Biochemistry Laboratory, PLEN, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Fang L, Li M, Zhang J, Jia C, Qiang Y, He X, Liu T, Zhou Q, Luo D, Han Y, Li Z, Liu W, Yang Y, Liu J, Liu Z. Chromosome-level genome assembly of Pedicularis kansuensis illuminates genome evolution of facultative parasitic plant. Mol Ecol Resour 2024; 24:e13966. [PMID: 38695851 DOI: 10.1111/1755-0998.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 06/04/2024]
Abstract
Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.
Collapse
Affiliation(s)
- Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jia Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chenglin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuqing Qiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuling Han
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenxian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Aubin E, Llauro C, Garrigue J, Mirouze M, Panaud O, El Baidouri M. Genome-wide analysis of horizontal transfer in non-model wild species from a natural ecosystem reveals new insights into genetic exchange in plants. PLoS Genet 2023; 19:e1010964. [PMID: 37856455 PMCID: PMC10586619 DOI: 10.1371/journal.pgen.1010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Horizontal transfer (HT) refers to the exchange of genetic material between divergent species by mechanisms other than reproduction. In recent years, several studies have demonstrated HTs in eukaryotes, particularly in the context of parasitic relationships and in model species. However, very little is known about HT in natural ecosystems, especially those involving non-parasitic wild species, and the nature of the ecological relationships that promote these HTs. In this work, we conducted a pilot study investigating HTs by sequencing the genomes of 17 wild non-model species from a natural ecosystem, the Massane forest, located in southern France. To this end, we developed a new computational pipeline called INTERCHANGE that is able to characterize HTs at the whole genome level without prior annotation and directly in the raw sequencing reads. Using this pipeline, we identified 12 HT events, half of which occurred between lianas and trees. We found that mainly low copy number LTR-retrotransposons from the Copia superfamily were transferred between these wild plant species, especially those of the Ivana and Ale lineages. This study revealed a possible new route for HTs between non-parasitic plants and provides new insights into the genomic characteristics of horizontally transferred DNA in plant genomes.
Collapse
Affiliation(s)
- Emilie Aubin
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
| | - Christel Llauro
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Joseph Garrigue
- Réserve Naturelle Nationale de la forêt de la Massane, France
| | - Marie Mirouze
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Diversité, Adaptation, Développement des Plantes, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| | - Moaine El Baidouri
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| |
Collapse
|
8
|
Simmons CR, Herman RA. Non-seed plants are emerging gene sources for agriculture and insect control proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:23-37. [PMID: 37309832 DOI: 10.1111/tpj.16349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The non-seed plants (e.g., charophyte algae, bryophytes, and ferns) have multiple human uses, but their contributions to agriculture and research have lagged behind seed plants. While sharing broadly conserved biology with seed plants and the major crops, non-seed plants sometimes possess alternative molecular and physiological adaptations. These adaptations may guide crop improvements. One such area is the presence of multiple classes of insecticidal proteins found in non-seed plant genomes which are either absent or widely diverged in seed plants. There are documented uses of non-seed plants, and ferns for example have been used in human diets. Among the occasional identifiable toxins or antinutritive components present in non-seed plants, none include these insecticidal proteins. Apart from these discrete risk factors which can be addressed in the safety assessment, there should be no general safety concern about sourcing genes from non-seed plant species.
Collapse
Affiliation(s)
- Carl R Simmons
- Corteva Agriscience, Trait Discovery, Johnston, Iowa, 50131, USA
| | - Rod A Herman
- Corteva Agriscience, Regulatory and Stewardship, Johnston, Iowa, 50131, USA
| |
Collapse
|
9
|
Pulido M, Casacuberta JM. Transposable element evolution in plant genome ecosystems. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102418. [PMID: 37459733 DOI: 10.1016/j.pbi.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 09/18/2023]
Abstract
The relationship of transposable elements (TEs) with their host genomes has usually been seen as an arms race between TEs and their host genomes. Consequently, TEs are supposed to amplify by bursts of transposition, when the TE escapes host surveillance, followed by long periods of TE quiescence and efficient host control. Recent data obtained from an increasing number of assembled plant genomes and resequencing population datasets show that TE dynamics is more complex and varies among TE families and their host genomes. This variation ranges from large genomes that accommodate large TE populations to genomes that are very active in TE elimination, and from inconspicuous elements with very low activity to elements with high transposition and elimination rates. The dynamics of each TE family results from a long history of interaction with the host in a genome populated by many other TE families, very much like an evolving ecosystem.
Collapse
Affiliation(s)
- Marc Pulido
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
10
|
Cervantes CR, Montes JR, Rosas U, Arias S. Phylogenetic discordance and integrative species delimitation in the Mammillaria haageana species complex (Cactaceae). Mol Phylogenet Evol 2023; 187:107891. [PMID: 37517507 DOI: 10.1016/j.ympev.2023.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Species complexes consist of very close phylogenetic relatives, where morphological similarities make it difficult to distinguish between them using traditional taxonomic methods. Here, we focused on the long-standing challenge of species delimitation in the Mammillaria haageana complex, a group that presents great morphological diversity that makes its taxonomy a puzzle. Our work integrates genomic, morphological, and ecological data to establish the taxonomic limits in the M. haageana complex, and we also studied the evolutionary relationships with the remainder of the M. ser. Supertextae species. Our genetic analyses, as well as morphological and ecological evidence, led us to propose that the M. haageana complex is made up of six distinct entities (M. acultzingensis, M. conspicua, M. haageana, M. lanigera, M. meissneri, and M. san-angelensis), mainly as a result of ecological speciation. A recent taxonomic proposal considered these taxa as a single species; therefore, we propose their recognition at the species level. Our results also show a high level of incomplete lineage sorting rather than reticulation, which is especially likely in recently diverged species such as those comprising M. ser. Supertextae. The species hypotheses proposed here may be useful in future extinction risk assessments and conservation strategies.
Collapse
Affiliation(s)
- Cristian R Cervantes
- Unidad de Síntesis en Sistemática y Evolución, Instituto de Biología, Circuito Exterior s.n., Ciudad Universitaria, Ciudad de México 04510, México; Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México.
| | - José-Rubén Montes
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Salvador Arias
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
11
|
Liu H, Hou Z, Xu L, Ma Q, Wei M, Tembrock LR, Zhang S, Wu Z. Comparative analysis of organellar genomes between diploid and tetraploid Chrysanthemum indicum with its relatives. FRONTIERS IN PLANT SCIENCE 2023; 14:1228551. [PMID: 37662149 PMCID: PMC10471889 DOI: 10.3389/fpls.2023.1228551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023]
Abstract
Chrysanthemum indicum, a species native to Eastern Asia is well known as one of the progenitor species of the cultivated Chrysanthemum which is grown for its ornamental and medicinal value. Previous genomic studies on Chrysanthemum have largely ignored the dynamics of plastid genome (plastome) and mitochondria genome (mitogenome) evolution when analyzing this plant lineage. In this study, we sequenced and assembled the plastomes and mitogenomes of diploid and tetraploid C. indicum as well as the morphologically divergent variety C. indicum var. aromaticum. We used published data from 27 species with both plastome and mitogenome complete sequences to explore differences in sequence evolution between the organellar genomes. The size and structure of organellar genome between diploid and tetraploid C. indicum were generally similar but the tetraploid C. indicum and C. indicum var. aromaticum were found to contain unique sequences in the mitogenomes which also contained previously undescribed open reading frames (ORFs). Across Chrysanthemum mitogenome structure varied greatly but sequences transferred from plastomes in to the mitogenomes were conserved. Finally, differences observed between mitogenome and plastome gene trees may be the result of the difference in the rate of sequence evolution between genes in these two genomes. In total the findings presented here greatly expand the resources for studying Chrysanthemum organellar genome evolution with possible applications to conservation, breeding, and gene banking in the future.
Collapse
Affiliation(s)
- Huihui Liu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lei Xu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Qing Ma
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Shuo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| |
Collapse
|
12
|
Gilbert C, Maumus F. Sidestepping Darwin: horizontal gene transfer from plants to insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101035. [PMID: 37061183 DOI: 10.1016/j.cois.2023.101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Horizontal transfer of genetic material (HT) is the passage of DNA between organisms by means other than reproduction. Increasing numbers of HT are reported in insects, with bacteria, fungi, plants, and insects acting as the main sources of these transfers. Here, we provide a detailed account of plant-to-insect HT events. At least 14 insect species belonging to 6 orders are known to have received plant genetic material through HT. One of them, the whitefly Bemisia tabaci (Middle East Asia Minor 1), concentrates most of these transfers, with no less than 28 HT events yielding 55 plant-derived genes in this species. Several plant-to-insect HT events reported so far involve gene families known to play a role in plant-parasite interactions. We highlight methodological approaches that may further help characterize these transfers. We argue that plant-to-insect HT is likely more frequent than currently appreciated and that in-depth studies of these transfers will shed new light on plant-insect interactions.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette, France.
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| |
Collapse
|
13
|
Veremeichik GN, Bulgakov DV, Solomatina TO, Makhazen DS. In the interkingdom horizontal gene transfer, the small rolA gene is a big mystery. Appl Microbiol Biotechnol 2023; 107:2097-2109. [PMID: 36881118 DOI: 10.1007/s00253-023-12454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The biological function of the agrobacterial oncogene rolA is very poorly understood compared to other components of the mechanism of horizontal gene transfer during agrobacterial colonization of plants. Research groups around the world have worked on this problem, and available information is reviewed in this review, but other rol oncogenes have been studied much more thoroughly. Having one unexplored element makes it impossible to form a complete picture. However, the limited data suggest that the rolA oncogene and its regulatory apparatus have great potential in plant biotechnology and genetic engineering. Here, we collect and discuss available experimental data about the function and structure of rolA. There is still no clear understanding of the mechanism of RolA and its structure and localization. We believe this is because of the nucleotide structure of a frameshift in the most well-studied rolA gene of the agropine type pRi. In fact, interest in the genes of agrobacteria as natural tools for the phenotypic or biochemical engineering of plants increased. We believe that a detailed understanding of the molecular mechanisms will be forthcoming. KEY POINTS: • Among pRi T-DNA oncogenes, rolA is the least understood in spite of many studies. • Frameshift may be the reason for the failure to elucidate the role of agropine rolA. • Understanding of rolA is promising for the phenotypic and biochemical engineering of plants.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia.
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia
| | - Taisia O Solomatina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia
| | - Dmitrii S Makhazen
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia
| |
Collapse
|
14
|
Orozco-Arias S, Dupeyron M, Gutiérrez-Duque D, Tabares-Soto R, Guyot R. High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Genome 2023; 66:51-61. [PMID: 36623262 DOI: 10.1139/gen-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TEs) are mobile elements found in the majority of eukaryotic genomes. TEs deeply impact the structure and evolution of chromosomes and can induce mutations affecting coding genes. In plants, the major group of TEs is long terminal repeat retrotransposons (LTR-RTs). They are classified into superfamilies (Gypsy, Copia) and subclassified into lineages. Horizontal transfer (HT), defined as the nonsexual transmission of genetic material between species, is a process allowing LTR-RTs to invade a new genome. Although this phenomenon was considered rare, recent studies demonstrate numerous transfers of LTR-RTs. This study aims to determine which LTR-RT lineages are shared with high similarity among 69 plant genomes. We identified and classified 88 450 LTR-RTs and determined 143 cases of high similarities between pairs of genomes. Most of them involved three Copia lineages (Oryco/Ivana, Retrofit/Ale, and Tork/Tar/Ikeros). A detailed analysis of three cases of high similarities involving Tork/Tar/Ikeros group shows an uneven distribution in the phylogeny of the elements and incongruence with between phylogenetic trees topologies, indicating they could be originated from HTs. Overall, our results suggest that LTR-RT Copia lineages share outstanding similarity between distant species and may likely be involved in HT mechanisms more frequent than initially estimated.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Sciences, Universidad Autónoma de Manizales, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Colombia
| | - Mathilde Dupeyron
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France
| | | | - Reinel Tabares-Soto
- Department of Systems and Informatics, Universidad de Caldas, Colombia.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| |
Collapse
|
15
|
Recent Advances in Antibiotic-Free Markers; Novel Technologies to Enhance Safe Human Food Production in the World. Mol Biotechnol 2022:10.1007/s12033-022-00609-7. [DOI: 10.1007/s12033-022-00609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
|
16
|
Muller H, Heisserer C, Fortuna T, Mougel F, Huguet E, Kaiser L, Gilbert C. Investigating bracovirus chromosomal integration and inheritance in lepidopteran host and nontarget species. Mol Ecol 2022; 31:5538-5551. [PMID: 36070218 DOI: 10.1111/mec.16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Bracoviruses (BVs) are domesticated viruses found in braconid parasitoid wasp genomes. They are composed of domesticated genes from a nudivrius, coding viral particles in which wasp DNA circles are packaged. BVs are viewed as possible vectors of horizontal transfer of genetic material (HT) from wasp to their hosts because they are injected, together with wasp eggs, by female wasps into their host larvae, and because they undergo massive chromosomal integration in multiple host tissues. Here, we show that chromosomal integrations of the Cotesia typhae BV (CtBV) persist up to the adult stage in individuals of its natural host, Sesamia nonagrioides, that survived parasitism. However, while reproducing host adults can bear an average of nearly two CtBV integrations per haploid genome, we were unable to retrieve any of these integrations in 500 of their offspring using Illumina sequencing. This suggests either that host gametes are less targeted by CtBVs than somatic cells or that gametes bearing BV integrations are nonfunctional. We further show that CtBV can massively integrate into the chromosomes of other lepidopteran species that are not normally targeted by the wasp in the wild, including one which is divergent by at least 100 million years from the natural host. Cell entry and chromosomal integration of BVs are thus unlikely to be major factors shaping wasp host range. Together, our results shed new light on the conditions under which BV-mediated wasp-to-host HT may occur and provide information that may be helpful to evaluate the potential risks of uncontrolled HT associated with the use of parasitoid wasps as biocontrol agents.
Collapse
Affiliation(s)
- Héloïse Muller
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Camille Heisserer
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France.,UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Taiadjana Fortuna
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Florence Mougel
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Laure Kaiser
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Bartha L, Mandáková T, Kovařík A, Bulzu PA, Rodde N, Mahelka V, Lysak MA, Fustier MA, Šafář J, Cápal P, Keresztes L, Banciu HL. Intact ribosomal DNA arrays of Potentilla origin detected in Erythronium nucleus suggest recent eudicot-to-monocot horizontal transfer. THE NEW PHYTOLOGIST 2022; 235:1246-1259. [PMID: 35460285 DOI: 10.1111/nph.18171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.
Collapse
Affiliation(s)
- László Bartha
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic
| | - Nathalie Rodde
- French Plant Genomic Resource Center, INRAE-CNRGV, 31320, Castanet Tolosan, France
| | - Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, 25243, Průhonice, Czech Republic
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | | | - Jan Šafář
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 779 00, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 779 00, Olomouc, Czech Republic
| | - Lujza Keresztes
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
- Centre of Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
| | - Horia L Banciu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
- Centre of Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
| |
Collapse
|