1
|
Mehta SK, Diak DM, Bustos-Lopez S, Nelman-Gonzalez M, Chen X, Plante I, Stray SJ, Tandon R, Crucian BE. Effect of Simulated Cosmic Radiation on Cytomegalovirus Reactivation and Lytic Replication. Int J Mol Sci 2024; 25:10337. [PMID: 39408667 PMCID: PMC11477029 DOI: 10.3390/ijms251910337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Human exploration of the solar system will expose crew members to galactic cosmic radiation (GCR), with a potential for adverse health effects. GCR particles (protons and ions) move at nearly the speed of light and easily penetrate space station walls, as well as the human body. Previously, we have shown reactivation of latent herpesviruses, including herpes simplex virus, Varicella zoster virus, Epstein-Barr virus, and cytomegalovirus (CMV), during stays at the International Space Station. Given the prevalence of latent CMV and the known propensity of space radiation to cause alterations in many cellular processes, we undertook this study to understand the role of GCR in reactivating latent CMV. Latently infected Kasumi cells with CMV were irradiated with 137Cs gamma rays, 150 MeV protons, 600 MeV/n carbon ions, 600 MeV/n iron ions, proton ions, and simulated GCR. The CMV copy number increased significantly in the cells exposed to radiation as compared with the non-irradiated controls. Viral genome sequencing did not reveal significant nucleotide differences among the compared groups. However, transcriptome analysis showed the upregulation of transcription of the UL49 ORF, implicating it in the switch from latent to lytic replication. These findings support our hypothesis that GCR may be a strong contributor to the reactivation of CMV infection seen in ISS crew members.
Collapse
Affiliation(s)
- Satish K. Mehta
- JES Tech, NASA, Johnson Space Center, Houston, TX 77058, USA
| | | | - Sara Bustos-Lopez
- Department of Health and Human Performance, University of Houston, Houston, TX 77004, USA;
| | | | - Xi Chen
- KBR, Houston, TX 77002, USA; (M.N.-G.); (X.C.); (I.P.)
| | - Ianik Plante
- KBR, Houston, TX 77002, USA; (M.N.-G.); (X.C.); (I.P.)
| | - Stephen J. Stray
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.J.S.); (R.T.)
| | - Ritesh Tandon
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.J.S.); (R.T.)
| | | |
Collapse
|
2
|
Plante I, West DW, Weeks J, Risca VI. Simulation of Radiation-Induced DNA Damage and Protection by Histones Using the Code RITRACKS. BIOTECH 2024; 13:17. [PMID: 38921049 PMCID: PMC11201919 DOI: 10.3390/biotech13020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: DNA damage is of great importance in the understanding of the effects of ionizing radiation. Various types of DNA damage can result from exposure to ionizing radiation, with clustered types considered the most important for radiobiological effects. (2) Methods: The code RITRACKS (Relativistic Ion Tracks), a program that simulates stochastic radiation track structures, was used to simulate DNA damage by photons and ions spanning a broad range of linear energy transfer (LET) values. To perform these simulations, the transport code was modified to include cross sections for the interactions of ions or electrons with DNA and amino acids for ionizations, dissociative electron attachment, and elastic collisions. The radiochemistry simulations were performed using a step-by-step algorithm that follows the evolution of all particles in time, including reactions between radicals and DNA structures and amino acids. Furthermore, detailed DNA damage events, such as base pair positions, DNA fragment lengths, and fragment yields, were recorded. (3) Results: We report simulation results using photons and the ions 1H+, 4He2+, 12C6+, 16O8+, and 56Fe26+ at various energies, covering LET values from 0.3 to 164 keV/µm, and performed a comparison with other codes and experimental results. The results show evidence of DNA protection from damage at its points of contacts with histone proteins. (4) Conclusions: RITRACKS can provide a framework for studying DNA damage from a variety of ionizing radiation sources with detailed representations of DNA at the atomic scale, DNA-associated proteins, and resulting DNA damage events and statistics, enabling a broader range of future comparisons with experiments such as those based on DNA sequencing.
Collapse
Affiliation(s)
| | - Devany W. West
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA; (D.W.W.); (V.I.R.)
| | - Jason Weeks
- NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA; (D.W.W.); (V.I.R.)
| |
Collapse
|
3
|
Poignant F, Pariset E, Plante I, Ponomarev AL, Evain T, Viger L, Slaba TC, Blattnig SR, Costes SV. DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation. Integr Biol (Camb) 2024; 16:zyae015. [PMID: 39299711 DOI: 10.1093/intbio/zyae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.
Collapse
Affiliation(s)
- Floriane Poignant
- Analytical Mechanics Associates Inc., 21 Enterprise Parkway, Hampton, VA 23666, United States
| | - Eloise Pariset
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, United States
| | - Ianik Plante
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States
| | | | - Trevor Evain
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Louise Viger
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Tony C Slaba
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Steve R Blattnig
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Sylvain V Costes
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
| |
Collapse
|
4
|
Bradshaw G, O'Leary M, Purser ASF, Villagomez-Bernabe B, Wyett C, Currell F, Webb M. A new approach for simulating inhomogeneous chemical kinetics. Sci Rep 2023; 13:14010. [PMID: 37640793 PMCID: PMC10462703 DOI: 10.1038/s41598-023-39741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023] Open
Abstract
In this paper, inhomogeneous chemical kinetics are simulated by describing the concentrations of interacting chemical species by a linear expansion of basis functions in such a manner that the coupled reaction and diffusion processes are propagated through time efficiently by tailor-made numerical methods. The approach is illustrated through modelling [Formula: see text]- and [Formula: see text]-radiolysis in thin layers of water and at their solid interfaces from the start of the chemical phase until equilibrium was established. The method's efficiency is such that hundreds of such systems can be modelled in a few hours using a single core of a typical laptop, allowing the investigation of the effects of the underlying parameter space. Illustrative calculations showing the effects of changing dose-rate and water-layer thickness are presented. Other simulations are presented which show the approach's capability to solve problems with spherical symmetry (an approximation to an isolated radiolytic spur), where the hollowing out of an initial Gaussian distribution is observed, in line with previous calculations. These illustrative simulations show the generality and the computational efficiency of this approach to solving reaction-diffusion problems. Furthermore, these example simulations illustrate the method's suitability for simulating solid-fluid interfaces, which have received a lot of experimental attention in contrast to the lack of computational studies.
Collapse
Affiliation(s)
- Georgia Bradshaw
- Department of Mathematics, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
| | - Mel O'Leary
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Dalton Cumbrian Facility, West Lakes Science and Technology Park, Moor Row, CA24 3HA, UK
| | - Arthur S F Purser
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Balder Villagomez-Bernabe
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Dalton Cumbrian Facility, West Lakes Science and Technology Park, Moor Row, CA24 3HA, UK
- St Luke's Cancer Centre, The Royal Hospital, Egerton Rd, Guildford, GU2 7XX, UK
| | - Cyrus Wyett
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Dalton Cumbrian Facility, West Lakes Science and Technology Park, Moor Row, CA24 3HA, UK
| | - Frederick Currell
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Dalton Cumbrian Facility, West Lakes Science and Technology Park, Moor Row, CA24 3HA, UK
| | - Marcus Webb
- Department of Mathematics, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
5
|
Cordoni FG, Missiaggia M, La Tessa C, Scifoni E. Multiple levels of stochasticity accounted for in different radiation biophysical models: from physics to biology. Int J Radiat Biol 2022; 99:807-822. [PMID: 36448923 DOI: 10.1080/09553002.2023.2146230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
PURPOSE In the present paper we investigate how some stochastic effects are included in a class of radiobiological models with particular emphasis on how such randomnesses reflect into the predicted cell survival curve. MATERIALS AND METHODS We consider four different models, namely the Generalized Stochastic Microdosimetric Model GSM2, in its original full form, the Dirac GSM2 the Poisson GSM2 and the Repair-Misrepair Model (RMR). While GSM2 and the RMR models are known in literature, the Dirac and the Poisson GSM2 have been newly introduced in this work. We further numerically investigate via Monte Carlo simulation of four different particle beams, how the proposed stochastic approximations reflect into the predicted survival curves. To achieve these results, we consider different ion species at energies of interest for therapeutic applications, also including a mixed field scenario. RESULTS We show how the Dirac GSM2, the Poisson GSM2 and the RMR can be obtained from the GSM2 under suitable approximations on the stochasticity considered. We analytically derive the cell survival curve predicted by the four models, characterizing rigorously the high and low dose limits. We further study how the theoretical findings emerge also using Monte Carlo numerical simulations. CONCLUSIONS We show how different models include different levels of stochasticity in the description of cellular response to radiation. This translates into different cell survival predictions depending on the radiation quality.
Collapse
Affiliation(s)
- Francesco G. Cordoni
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- TIFPA-INFN, Trento, Italy
| | - Marta Missiaggia
- TIFPA-INFN, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Chiara La Tessa
- TIFPA-INFN, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | | |
Collapse
|
6
|
Geometrical Properties of the Nucleus and Chromosome Intermingling Are Possible Major Parameters of Chromosome Aberration Formation. Int J Mol Sci 2022; 23:ijms23158638. [PMID: 35955776 PMCID: PMC9368922 DOI: 10.3390/ijms23158638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Ionizing radiation causes chromosome aberrations, which are possible biomarkers to assess space radiation cancer risks. Using the Monte Carlo codes Relativistic Ion Tracks (RITRACKS) and Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage (RITCARD), we investigated how geometrical properties of the cell nucleus, irradiated with ion beams of linear energy transfer (LET) ranging from 0.22 keV/μm to 195 keV/μm, influence the yield of simple and complex exchanges. We focused on the effect of (1) nuclear volume by considering spherical nuclei of varying radii; (2) nuclear shape by considering ellipsoidal nuclei of varying thicknesses; (3) beam orientation; and (4) chromosome intermingling by constraining or not constraining chromosomes in non-overlapping domains. In general, small nuclear volumes yield a higher number of complex exchanges, as compared to larger nuclear volumes, and a higher number of simple exchanges for LET < 40 keV/μm. Nuclear flattening reduces complex exchanges for high-LET beams when irradiated along the flattened axis. The beam orientation also affects yields for ellipsoidal nuclei. Reducing chromosome intermingling decreases both simple and complex exchanges. Our results suggest that the beam orientation, the geometry of the cell nucleus, and the organization of the chromosomes within are important parameters for the formation of aberrations that must be considered to model and translate in vitro results to in vivo risks.
Collapse
|
7
|
Impact of Radiation Quality on Microdosimetry and Chromosome Aberrations for High-Energy (>250 MeV/n) Ions. Life (Basel) 2022; 12:life12030358. [PMID: 35330109 PMCID: PMC8955614 DOI: 10.3390/life12030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Studying energy deposition by space radiation at the cellular scale provides insights on health risks to astronauts. Using the Monte Carlo track structure code RITRACKS, and the chromosome aberrations code RITCARD, we performed a modeling study of single-ion energy deposition spectra and chromosome aberrations for high-energy (>250 MeV/n) ion beams with linear energy transfer (LET) varying from 0.22 to 149.2 keV/µm. The calculations were performed using cells irradiated directly by mono-energetic ion beams, and by poly-energetic beams after particle transport in a digital mouse model, representing the radiation exposure of a cell in a tissue. To discriminate events from ion tracks directly traversing the nucleus, to events from δ-electrons emitted by distant ion tracks, we categorized ion contributions to microdosimetry or chromosome aberrations into direct and indirect contributions, respectively. The ions were either ions of the mono-energetic beam or secondary ions created in the digital mouse due to interaction of the beam with tissues. For microdosimetry, the indirect contribution is largely independent of the beam LET and minimally impacted by the beam interactions in mice. In contrast, the direct contribution is strongly dependent on the beam LET and shows increased probabilities of having low and high-energy deposition events when considering beam transport. Regarding chromosome aberrations, the indirect contribution induces a small number of simple exchanges, and a negligible number of complex exchanges. The direct contribution is responsible for most simple and complex exchanges. The complex exchanges are significantly increased for some low-LET ion beams when considering beam transport.
Collapse
|
8
|
Shuryak I, Slaba TC, Plante I, Poignant F, Blattnig SR, Brenner DJ. A practical approach for continuous in situ characterization of radiation quality factors in space. Sci Rep 2022; 12:1453. [PMID: 35087104 PMCID: PMC8795169 DOI: 10.1038/s41598-022-04937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
The space radiation environment is qualitatively different from Earth, and its radiation hazard is generally quantified relative to photons using quality factors that allow assessment of biologically-effective dose. Two approaches exist for estimating radiation quality factors in complex low/intermediate-dose radiation environments: one is a fluence-based risk cross-section approach, which requires very detailed in silico characterization of the radiation field and biological cross sections, and thus cannot realistically be used for in situ monitoring. By contrast, the microdosimetric approach, using measured (or calculated) distributions of microdosimetric energy deposition together with empirical biological weighting functions, is conceptually and practically simpler. To demonstrate feasibility of the microdosimetric approach, we estimated a biological weighting function for one specific endpoint, heavy-ion-induced tumorigenesis in APC1638N/+ mice, which was unfolded from experimental results after a variety of heavy ion exposures together with corresponding calculated heavy ion microdosimetric energy deposition spectra. Separate biological weighting functions were unfolded for targeted and non-targeted effects, and these differed substantially. We folded these biological weighting functions with microdosimetric energy deposition spectra for different space radiation environments, and conclude that the microdosimetric approach is indeed practical and, in conjunction with in-situ measurements of microdosimetric spectra, can allow continuous readout of biologically-effective dose during space flight.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA.
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, USA
| | | | | | | | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| |
Collapse
|
9
|
Response of Arabidopsis thaliana and Mizuna Mustard Seeds to Simulated Space Radiation Exposures. Life (Basel) 2022; 12:life12020144. [PMID: 35207432 PMCID: PMC8879990 DOI: 10.3390/life12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/30/2023] Open
Abstract
One of the major concerns for long-term exploration missions beyond the Earth’s magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.
Collapse
|