1
|
Velazquez-Meza ME, Galarde-López M, Cornejo-Juárez P, Carrillo-Quiroz BA, Velázquez-Acosta C, Bobadilla-del-Valle M, Ponce-de-León A, Alpuche-Aranda CM. Multidrug-Resistant Staphylococcus sp. and Enterococcus sp. in Municipal and Hospital Wastewater: A Longitudinal Study. Microorganisms 2024; 12:645. [PMID: 38674590 PMCID: PMC11051902 DOI: 10.3390/microorganisms12040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of the study was to detect multidrug-resistant Staphylococcus sp. and Enterococcus sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospital and two community wastewater treatment plants (WWTPs). In each season of the year, two treated and two raw wastewater samples were collected in duplicate at each of the WWTPs studied. Screening and presumptive identification of staphylococci and enterococci was performed using chromoagars, and identification was performed with the Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS®). Antimicrobial susceptibility was performed using VITEK 2® automated system. There were 56 wastewater samples obtained during the study period. A total of 182 Staphylococcus sp. and 248 Enterococcus sp. were identified. The highest frequency of Staphylococcus sp. isolation was in spring and summer (n = 129, 70.8%), and for Enterococcus sp. it was in autumn and winter (n = 143, 57.7%). Sixteen isolates of Staphylococcus sp. and sixty-three of Enterococcus sp. persisted during WWTP treatments. Thirteen species of staphylococci and seven species of enterococci were identified. Thirty-one isolates of Staphylococcus sp. and ninety-four of Enterococcus sp. were multidrug-resistant. Resistance to vancomycin (1.1%), linezolid (2.7%), and daptomycin (8.2%/10.9%%), and a lower susceptibility to tigecycline (2.7%), was observed. This study evidences the presence of Staphylococcus sp. and Enterococcus sp. resistant to antibiotics of last choice of clinical treatment, in community and hospital wastewater and their ability to survive WWTP treatment systems.
Collapse
Affiliation(s)
- Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Miguel Galarde-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Patricia Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Berta Alicia Carrillo-Quiroz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Consuelo Velázquez-Acosta
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Miriam Bobadilla-del-Valle
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-León
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Celia Mercedes Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| |
Collapse
|
2
|
Wang L, Yang M, Guo C, Jiang Y, Zhu Z, Hu C, Zhang X. Toxicity of tigecycline on the freshwater microalga Scenedesmus obliquus: Photosynthetic and transcriptional responses. CHEMOSPHERE 2024; 349:140885. [PMID: 38061560 DOI: 10.1016/j.chemosphere.2023.140885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Tigecycline (TGC) is a new tetracycline antibiotic medication against multidrug-resistant bacteria. However, the toxicity of TGC to microalgae remains largely unknown. In this study, the toxicity of TGC on Scenedesmus obliquus was examined, focusing on changes in algal growth, photosynthetic activity, and transcriptome. According to an acute toxicity test, the IC10 and IC50 values were 0.72 mg/L and 4.15 mg/L, respectively. Analyses of photosynthetic efficiency and related parameters, such as light absorption, energy capture, and electron transport, identified a 35% perturbation in the IC50 group, while the IC10 group remained largely unaffected. Transcriptomic analysis showed that in the IC10 and IC50 treatment groups, there were 874 differentially expressed genes (DEGs) (220 upregulated and 654 downregulated) and 4289 DEGs (2660 upregulated and 1629 downregulated), respectively. Gene Ontology enrichment analysis showed that TGC treatment markedly affected photosynthesis, electron transport, and chloroplast functions. In the IC50 group, a clear upregulation of genes related to photosynthesis and chloroplast functions was observed, which could be an adaptive stress response. In the IC10 group, significant downregulation of DEGs involved in ribosomal pathways and peptide biosynthesis processes was observed. Kyoto Encyclopedia of Gene and Genomes enrichment analysis showed that treatment with TGC also disrupted energy production, protein synthesis, and metabolic processes in S. obliquus. Significant downregulation of key proteins related to Photosystem II was observed under the IC10 TGC treatment. Conversely, IC50 TGC treatment resulted in substantial upregulation across a broad array of photosystem-related proteins from both Photosystems II and I. IC10 and IC50 TGC treatments differentially influenced proteins involved in the photosynthetic electron transport process. This study emphasizes the potential risks of TGC pollution to microalgae, which contributes to a better understanding of the effects of antibiotic contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Liyan Wang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Maoxian Yang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Canyang Guo
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yeqiu Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhihong Zhu
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoping Zhang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
3
|
Geissler M, Schröttner P, Oertel R, Dumke R. Enterococci, Van Gene-Carrying Enterococci, and Vancomycin Concentrations in the Influent of a Wastewater Treatment Plant in Southeast Germany. Microorganisms 2024; 12:149. [PMID: 38257976 PMCID: PMC10819932 DOI: 10.3390/microorganisms12010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vancomycin-resistant (VR) Enterococcus spp. can be detected in high concentrations in wastewaters and pose a risk to public health. During a one-year study (September 2022-August 2023), 24 h composite raw wastewater samples (n = 192) of a municipal wastewater treatment plant were investigated for cultivable enterococci. After growth on Slanetz-Bartley agar (SBA), a mean concentration of 29,736 ± 9919 cfu/mL was calculated. Using MALDI-TOF MS to characterize randomly picked colonies (n = 576), the most common species were found to be Enterococcus faecium (72.6%), E. hirae (13.7%), and E. faecalis (8.0%). Parallel incubation of wastewater samples on SBA and VRESelect agar resulted in a mean rate of VR enterococci of 2.0 ± 1.5%. All the tested strains grown on the VRESelect agar (n = 172) were E. faecium and carried the vanA (54.6%) or vanB gene (45.4%) with limited sequence differences. In susceptibility experiments, these isolates showed a high-level resistance to vancomycin (>256 µg/mL). Concentration of vancomycin was determined in 93.7% of 112 wastewater samples (mean: 123.1 ± 64.0 ng/L) and varied between below 100 ng/L (the detection limit) and 246.6 ng/L. A correlation between the concentration of vancomycin and the rate of VR strains among the total enterococci could not be found. The combination of incubation of samples on SBA and a commercial vancomycin-containing agar applied in clinical microbiology with a multiplex PCR for detection of van genes is an easy-to-use tool to quantify and characterize VR Enterococcus spp. in water samples.
Collapse
Affiliation(s)
- Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| | - Percy Schröttner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| |
Collapse
|
4
|
Su H, Wu C, Han P, Liu Z, Liang M, Zhang Z, Wang Z, Guo G, He X, Pang J, Wang C, Weng S, He J. The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129543. [PMID: 35870206 DOI: 10.1016/j.jhazmat.2022.129543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexFYTV-1, mexFYTV-2, mexFYTV-3, vanRYTV-1, vanSYTV-1 (carried by unclassified viruses), and bacAYTB-1 (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity.
Collapse
Affiliation(s)
- Hualong Su
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Chengcheng Wu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Peiyun Han
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zixuan Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Mincong Liang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Zheng Zhang
- Baidu International Technology (Shenzhen), Shenzhen 518062, China
| | - Zhike Wang
- Hainan Guodun Information Development, Haikou 570206, China
| | - Guangyu Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Xinyi He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhu Pang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Bakon SK, Mohamad ZA, Jamilan MA, Hashim H, Kuman MY, Shaharudin R, Ahmad N, Muhamad NA. Prevalence of antibiotics resistant pathogenic bacteria and level of antibiotic residues in the hospital effluents in Selangor: study protocol (Preprint). JMIR Res Protoc 2022; 12:e39022. [DOI: 10.2196/39022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
|
6
|
Kolář M. Bacterial Infections, Antimicrobial Resistance and Antibiotic Therapy. LIFE (BASEL, SWITZERLAND) 2022; 12:life12040468. [PMID: 35454959 PMCID: PMC9027052 DOI: 10.3390/life12040468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022]
Abstract
Bacterial infections have been, and are very likely to continue to be, among the most serious problems in medicine [...].
Collapse
Affiliation(s)
- Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 15 Olomouc, Czech Republic
| |
Collapse
|