1
|
Matsuo T, Hamasaki I, Kamatani Y, Kawaguchi T, Yamaguchi I, Matsuda F, Saito A, Nakazono K, Kamitsuji S. Genome-Wide Association Study with Three Control Cohorts of Japanese Patients with Esotropia and Exotropia of Comitant Strabismus and Idiopathic Superior Oblique Muscle Palsy. Int J Mol Sci 2024; 25:6986. [PMID: 39000095 PMCID: PMC11241339 DOI: 10.3390/ijms25136986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024] Open
Abstract
Esotropia and exotropia in the entity of comitant strabismus are multifactorial diseases with both genetic and environmental backgrounds. Idiopathic superior oblique muscle palsy, as the predominant entity of non-comitant (paralytic) strabismus, also has a genetic background, as evidenced by varying degrees of muscle hypoplasia. A genome-wide association study (GWAS) was conducted of 711 Japanese patients with esotropia (n= 253), exotropia (n = 356), and idiopathic superior oblique muscle palsy (n = 102). The genotypes of single nucleotide polymorphisms (SNPs) were determined by Infinium Asian Screening Array. Three control cohorts from the Japanese population were used: two cohorts from BioBank Japan (BBJ) and the Nagahama Cohort. BBJ (180K) was genotyped by a different array, Illumina Infinium OmniExpressExome or HumanOmniExpress, while BBJ (ASA) and the Nagahama Cohort were genotyped by the same Asian array. After quality control of SNPs and individuals, common SNPs between the case cohort and the control cohort were chosen in the condition of genotyping by different arrays, while all SNPs genotyped by the same array were used for SNP imputation. The SNPs imputed with R-square values ≥ 0.3 were used to compare the case cohort of each entity or the combined entity with the control cohort. In comparison with BBJ (180K), the esotropia group and the exotropia group showed CDCA7 and HLA-F, respectively, as candidate genes at a significant level of p < 5 × 10-8, while the idiopathic superior oblique muscle palsy group showed DAB1 as a candidate gene which is involved in neuronal migration. DAB1 was also detected as a candidate in comparison with BBJ (ASA) and the Nagahama Cohort at a weak level of significance of p < 1 × 10-6. In comparison with BBJ (180K), RARB (retinoic acid receptor-β) was detected as a candidate at a significant level of p < 5 × 10-8 in the combined group of esotropia, exotropia, and idiopathic superior oblique muscle palsy. In conclusion, a series of GWASs with three different control cohorts would be an effective method with which to search for candidate genes for multifactorial diseases such as strabismus.
Collapse
Affiliation(s)
- Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama City 700-8558, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama City 700-8558, Japan
| | - Ichiro Hamasaki
- Department of Ophthalmology, Okayama University Hospital, Okayama City 700-8558, Japan
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (F.M.)
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (F.M.)
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (F.M.)
| | - Akira Saito
- StaGen Co., Ltd., Tokyo 111-0051, Japan (S.K.)
| | | | | |
Collapse
|
2
|
Chaomulige, Matsuo T, Sugimoto K, Miyaji M, Hosoya O, Ueda M, Kobayashi R, Horii T, Hatada I. Morphometric Analysis of the Eye by Magnetic Resonance Imaging in MGST2-Gene-Deficient Mice. Biomedicines 2024; 12:370. [PMID: 38397974 PMCID: PMC10887158 DOI: 10.3390/biomedicines12020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Strabismus, a neuro-ophthalmological condition characterized by misalignment of the eyes, is a common ophthalmic disorder affecting both children and adults. In our previous study, we identified the microsomal glutathione S-transferase 2 (MGST2) gene as one of the potential candidates for comitant strabismus susceptibility in a Japanese population. The MGST2 gene belongs to the membrane-associated protein involved in the generation of pro-inflammatory mediators, and it is also found in the protection against oxidative stress by decreasing the reactivity of oxidized lipids. To look for the roles of the MGST2 gene in the development, eye alignment, and overall morphology of the eye as the possible background of strabismus, MGST2 gene knockout (KO) mice were generated by CRISPR/Cas9-mediated gene editing with guide RNAs targeting the MGST2 exon 2. The ocular morphology of the KO mice was analyzed through high-resolution images obtained by a magnetic resonance imaging (MRI) machine for small animals. The morphometric analyses showed that the height, width, and volume of the eyeballs in MGST2 KO homozygous mice were significantly greater than those of wild-type mice, indicating that the eyes of MGST2 KO homozygous mice were significantly enlarged. There were no significant differences in the axis length and axis angle. These morphological changes may potentially contribute to the development of a subgroup of strabismus.
Collapse
Affiliation(s)
- Chaomulige
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan;
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan;
- Department of Ophthalmology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kohei Sugimoto
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan;
| | - Mary Miyaji
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.); (O.H.)
| | - Osamu Hosoya
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.); (O.H.)
| | - Masashi Ueda
- Department of Biofunctional Imaging Analysis, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Ryosuke Kobayashi
- Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; (R.K.); (T.H.); (I.H.)
| | - Takuro Horii
- Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; (R.K.); (T.H.); (I.H.)
| | - Izuho Hatada
- Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; (R.K.); (T.H.); (I.H.)
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| |
Collapse
|
3
|
Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy. Int J Mol Sci 2022; 23:ijms23158626. [PMID: 35955756 PMCID: PMC9369257 DOI: 10.3390/ijms23158626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Idiopathic superior oblique muscle palsy is a major type of paralytic, non-comitant strabismus and presents vertical and cyclo-torsional deviation of one eye against the other eye, with a large vertical fusion range and abnormal head posture such as head tilt. Genetic background is considered to play a role in its development, as patients with idiopathic superior oblique muscle palsy have varying degrees of muscle hypoplasia and, rarely, the complete absence of the muscle, that is, aplasia. In this study, whole genome sequencing was performed, and single nucleotide variations and short insertions/deletions (SNVs/InDels) were annotated in two patients each in three small families (six patients in total) with idiopathic superior oblique muscle palsy, in addition to three normal individuals in one family. At first, linkage analysis was carried out in the three families and SNVs/InDels in chromosomal loci with negative LOD scores were excluded. Next, SNVs/InDels shared by the six patients, but not by the three normal individuals, were chosen. SNVs/InDels were further narrowed down by choosing low-frequency (<1%) or non-registered SNVs/InDels in four databases for the Japanese population, and then by choosing SNVs/InDels with functional influence, leading to one candidate gene, SSTR5-AS1 in chromosome 16. The six patients were heterozygous for 13-nucleotide deletion in SSTR5-AS1, except for one homozygous patient, while the three normal individuals were wild type. Targeted polymerase chain reaction (PCR) and direct sequencing of PCR products confirmed the 13-nucleotide deletion in SSTR5-AS1. In the face of newly-registered SSTR5-AS1 13-nucleotide deletion at a higher frequency in a latest released database for the Japanese population, the skipping of low-frequency and non-registration sorting still resulted in only 13 candidate genes including SSTR5-AS1 as common variants. The skipping of linkage analysis also led to the same set of 13 candidate genes. Different testing strategies that consisted of linkage analysis and simple unintentional bioinformatics could reach candidate genes in three small families with idiopathic superior oblique muscle palsy.
Collapse
|