1
|
Guerrieri RA, Fischer GM, Kircher DA, Joon AY, Cortez JR, Grossman AH, Hudgens CW, Ledesma DA, Lazcano R, Onana CY, Knighton BG, Kumar S, Hu Q, Gopal YNV, McQuade JL, Deng W, Haydu LE, Gershenwald JE, Lazar AJ, Tetzlaff MT, Holmen SL, Davies MA. Oxidative Phosphorylation (OXPHOS) Promotes the Formation and Growth of Melanoma Lung and Brain Metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.633049. [PMID: 39896644 PMCID: PMC11785201 DOI: 10.1101/2025.01.23.633049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Melanoma mortality is driven by the formation and growth of distant metastases. Here, we interrogated the role of tumor oxidative phosphorylation (OXPHOS) in the formation of distant metastases in melanoma. OXPHOS was the most upregulated metabolic pathway in primary tumors that formed distant metastases in the RCAS-TVA mouse model of spontaneous lung and brain metastases, and in melanoma patients that developed brain or other distant metastases. Knockout of PGC1α in melanocytes in the RCAS-TVA melanoma mouse model had no impact on primary tumor formation, but markedly reduced the incidence of lung and brain metastases. Genetic knockout of a component of electron transport chain complex I, NDUFS4, in B16-F10 and D4M-UV2 murine melanoma cell lines did not impact tumor incidence following subcutaneous, intravenous, or intracranial injection, but decreased tumor burden specifically in the lungs and brain. Together, these data demonstrate that OXPHOS is critical for the formation of metastases in melanoma. STRUCTURED ABSTRACT Purpose: Melanoma mortality is driven by the formation and growth of distant metastases. However, the process and pathogenesis of melanoma metastasis remain poorly understood. Here, we interrogate the role of tumor oxidative phosphorylation (OXPHOS) in the formation of distant metastases in melanoma.Experimental Design: This study includes (1) new RNA-seq analysis of primary melanomas from patients characterized for distant metastasis events; (2) RNA-seq analysis and functional testing of genetic OXPHOS inhibition (PGC1α KO) the RCAS-TVA model, which is the only existing immunocompetent murine model of autochthonous lung and brain metastasis formation from primary melanoma tumors; and (3) functional experiments of genetic OXPHOS inhibition (NDUFS4 KO) in the B16-F10 and D4M-UV2 murine melanoma cell lines, including evaluation of subcutaneous, lung, and brain metastatic site dependencies.Results: OXPHOS was the most upregulated metabolic pathway in primary tumors that formed distant metastases in the RCAS-TVA mouse model of spontaneous lung and brain metastases, and in melanoma patients that developed brain or other distant metastases. Knockout of PGC1a in melanocytes in the RCAS-TVA melanoma mouse model had no impact on primary tumor formation, but markedly reduced the incidence of lung and brain metastases. Genetic knockout of a component of electron transport chain complex I, NDUFS4, in B16-F10 and D4M-UV2 murine melanoma cell lines did not impact tumor incidence following subcutaneous, intravenous, or intracranial injection, but decreased tumor burden specifically in the lungs and brain.Conclusions: Together, these data demonstrate that OXPHOS is critical for the formation of metastases in melanoma. TRANSLATIONAL RELEVANCE Melanoma is the most aggressive form of skin cancer. One hallmark of this disease is a high risk of distant metastasis formation. The process and pathogenesis of metastasis in this disease remain poorly understood and there is controversy regarding the role of oxidative phosphorylation (OXPHOS) in melanoma metastasis. This study incorporates RNAseq analysis of primary melanoma tumors from patients characterized for distant metastasis events, RNAseq analysis of the only existing immunocompetent murine model of autochthonous lung and brain metastasis formation from primary melanoma tumors, and functional testing in multiple syngeneic models of melanoma at different tissue sites. This integrated analysis consistently demonstrates that melanoma OXPHOS promotes distant metastasis to the lungs and brain, two of the most common and clinically relevant sites of melanoma metastasis. This improved understanding of tumor OXPHOS may represent novel vulnerabilities for therapeutics development and surveillance/preventative strategies for melanoma metastasis.
Collapse
|
2
|
Mohamady Farouk Abdalsalam N, Liang Z, Kashaf Tariq H, Ibrahim A, Li R, Wan X, Yan D. Etomoxir Sodium Salt Promotes Imidazole Ketone Erastin-Induced Myeloid-Derived Suppressor Cell Ferroptosis and Enhances Cancer Therapy. BIOLOGY 2024; 13:949. [PMID: 39596904 PMCID: PMC11592117 DOI: 10.3390/biology13110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Although ferroptosis inducers trigger ferroptotic tumor cells and immune cells in the tumor microenvironment (TME), imidazole ketone erastin (IKE)'s induction of ferroptosis shows no effect on tumor growth in immunocompetent tumor-bearing mice due to the presence of myeloid-derived suppressor cells (MDSCs). Treatment of the carnitine palmitoyltransferase 1a (CPT1A)-specific inhibitor decreases the immunosuppressive function of MDSCs and enhances ferroptotic inducer-initiated tumor cell ferroptosis. However, whether blocking CPT1A could enhance IKE-induced MDSC ferroptosis and thereby inhibit tumor growth is still unclear. Here, we report that a CPT1A-specific inhibitor, etomoxir sodium salt (Eto), and IKE combined treatment increased MDSC ferroptosis. Interestingly, the combination treatment of Eto and IKE blocked MDSCs' immunosuppressive function and accumulation by downregulating the expression of SLC7A11, GPX4, and ARG1 while promoting T-cell proliferation and infiltration into tumor tissues to enhance cancer therapy. These data provide a rationale for the combination therapy of a specific CPT1A inhibitor, Eto, with IKE in clinical settings.
Collapse
Affiliation(s)
- Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
| | - Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (N.M.F.A.); (Z.L.); (H.K.T.); (A.I.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|
3
|
Tang M, Rong Y, Li X, Pan H, Tao P, Wu Z, Liu S, Tang R, Liu Z, Cai H. Anoikis-related genes in breast cancer patients: reliable biomarker of prognosis. BMC Cancer 2024; 24:1163. [PMID: 39300389 DOI: 10.1186/s12885-024-12830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women, and its progression is closely related to the phenomenon of anoikis. Anoikis, the specific programmed death resulting from a lack of contact between cells and the extracellular matrix, has recently been recognized as playing a critical role in tumor initiation, maintenance, and treatment. The ability of cancer cells to resist anoikis leads to cancer progression and metastatic colonization. However, the impact of anoikis on the prognosis of BC patients remains unclear. METHOD This study utilized data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to collect transcriptome and clinical data of BC patients. Anoikis-related genes (ARGs) were classified into subtypes A and B through consensus clustering. Subsequently, survival prognosis analysis, immune cell infiltration analysis, and functional enrichment analysis were performed for both subtypes. Using the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, a set of 10 ARGs related to prognosis was identified. Immune cell infiltration and tumor microenvironment analyses were conducted on these 10 ARGs to develop a prognostic model. Furthermore, single-cell data analysis and real-time polymerase chain reaction (RT-PCR) analysis were employed to study the expression of the 10 identified prognostic ARGs in BC cells. RESULTS One hundred thirty-five ARGs were identified as differentially expressed genes in the TCGA and GEO databases, with 42 of them associated with the survival prognosis of BC patients. Analyses involving Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP) revealed distinct expression patterns of ARGs between types A and B. Patients in type A exhibited worse survival prognosis and lower immune cell infiltration compared to type B. Subsequent analyses identified 10 key ARGs (YAP1, PIK3R1, BAK1, PHLDA2, EDA2R, LAMB3, CD24, SLC2A1, CDC25C, and SLC39A6) relevant to BC prognosis. Kaplan-Meier analysis indicated that high-risk patients based on these ARGs had a poorer BC prognosis. Additionally, Cox regression analysis established gender, age, T (tumor), N (nodes), and risk score as predictive factors in a nomogram model for BC. The model demonstrated diagnostic value for BC patients at 1, 3, and 5 years. Decision curve analysis (DCA) verified the risk score as a reliable predictor of BC patient survival rates. Moreover, RT-PCR results confirmed differential expressions of YAP1, PIK3R1, BAK1, PHLDA2, CD24, SLC2A1, and CDC25C in BC cells, with SLC39A6, EDA2R, and LAMB3 showing low expression levels. CONCLUSION ARGs markers can be used as BC biomarkers for risk stratification and survival prediction in BC patients. Besides, ARGs can be used as stratification factors for individualized and precise treatment of BC patients.
Collapse
Affiliation(s)
- Mingzheng Tang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Department, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaofeng Li
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Haibang Pan
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Pengxian Tao
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Zhihang Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Department, General Hospital of Southern Theater Command, Guangzhou, China
| | - Renmei Tang
- Qionghai People's Hospital Breast and Thyroid Surgery, Qionghai, China.
| | - Zhilong Liu
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China.
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China.
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
4
|
Liu J, Ma R, Chen S, Lai Y, Liu G. Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma. Clin Transl Oncol 2024; 26:1170-1186. [PMID: 37989822 DOI: 10.1007/s12094-023-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Anoikis is a cell death programmed to eliminate dysfunctional or damaged cells induced by detachment from the extracellular matrix. Utilizing an anoikis-based risk stratification is anticipated to understand melanoma's prognostic and immune landscapes comprehensively. METHODS Differential expression genes (DEGs) were analyzed between melanoma and normal skin tissues in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data sets. Next, least absolute shrinkage and selection operator, support vector machine-recursive feature elimination algorithm, and univariate and multivariate Cox analyses on the 308 DEGs were performed to build the prognostic signature in the TCGA-melanoma data set. Finally, the signature was validated in GSE65904 and GSE22155 data sets. NOTCH3, PIK3R2, and SOD2 were validated in our clinical samples by immunohistochemistry. RESULTS The prognostic model for melanoma patients was developed utilizing ten hub anoikis-related genes. The overall survival (OS) of patients in the high-risk subgroup, which was classified by the optimal cutoff value, was remarkably shorter in the TCGA-melanoma, GSE65904, and GSE22155 data sets. Low-risk patients exhibited low immune cell infiltration and high expression of immunophenoscores and immune checkpoints. They also demonstrated increased sensitivity to various drugs, including dasatinib and dabrafenib. NOTCH3, PIK3R2, and SOD2 were notably associated with OS by univariate Cox analysis in the GSE65904 data set. The clinical melanoma samples showed remarkably higher protein expressions of NOTCH3 (P = 0.003) and PIK3R2 (P = 0.009) than the para-melanoma samples, while the SOD2 protein expression remained unchanged. CONCLUSIONS In this study, we successfully established a prognostic anoikis-connected signature using machine learning. This model may aid in evaluating patient prognosis, clinical characteristics, and immune treatment modalities for melanoma.
Collapse
Affiliation(s)
- Jinfang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Rong Ma
- School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Siyuan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, No. 1278 Baode Road, Shanghai, China.
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China.
| |
Collapse
|
5
|
Cunha A, Silva PMA, Sarmento B, Queirós O. Targeting Glucose Metabolism in Cancer Cells as an Approach to Overcoming Drug Resistance. Pharmaceutics 2023; 15:2610. [PMID: 38004589 PMCID: PMC10675572 DOI: 10.3390/pharmaceutics15112610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The "Warburg effect" consists of a metabolic shift in energy production from oxidative phosphorylation to glycolysis. The continuous activation of glycolysis in cancer cells causes rapid energy production and an increase in lactate, leading to the acidification of the tumour microenvironment, chemo- and radioresistance, as well as poor patient survival. Nevertheless, the mitochondrial metabolism can be also involved in aggressive cancer characteristics. The metabolic differences between cancer and normal tissues can be considered the Achilles heel of cancer, offering a strategy for new therapies. One of the main causes of treatment resistance consists of the increased expression of efflux pumps, and multidrug resistance (MDR) proteins, which are able to export chemotherapeutics out of the cell. Cells expressing MDR proteins require ATP to mediate the efflux of their drug substrates. Thus, inhibition of the main energy-producing pathways in cancer cells, not only induces cancer cell death per se, but also overcomes multidrug resistance. Given that most anticancer drugs do not have the ability to distinguish normal cells from cancer cells, a number of drug delivery systems have been developed. These nanodrug delivery systems provide flexible and effective methods to overcome MDR by facilitating cellular uptake, increasing drug accumulation, reducing drug efflux, improving targeted drug delivery, co-administering synergistic agents, and increasing the half-life of drugs in circulation.
Collapse
Affiliation(s)
- Andrea Cunha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- 1H—TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 3810-193 Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| |
Collapse
|
6
|
Li Y, Zhang Q, Yang J, He W, Jiang Y, Chen Y, Wang Y. Metformin combined with glucose starvation synergistically suppress triple-negative breast cancer by enhanced unfolded protein response. Biochem Biophys Res Commun 2023; 675:146-154. [PMID: 37473529 DOI: 10.1016/j.bbrc.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Metformin (MET) is a well-documented drug used in the treatment of type II diabetes. Recent studies have revealed its potential anti-tumor effects in various types of cancer. However, the dosage of MET required to exhibit anti-tumor activity is considerably higher than the clinically recommended dosage. In this study, we investigated the synergistical anti-tumor effect of glucose deprivation and MET in MDA-MB-231 cells, which represents a triple-negative breast cancer subtype (TNBC). Our findings demonstrate that glucose deprivation significantly enhances the anti-tumor activity of MET by reducing cell proliferation and increasing cell apoptosis. RNA-seq was performed to identify the key molecules involved in this process. Our results indicate that unfolded protein response of endoplasmic reticulum (UPRER) was significantly activated upon glucose starvation combining with MET compared to glucose starvation alone. Notably, the combined treatment significantly activated UPRER signaling pathway through ATF4/ATF3/CHOP axis, due to enhanced UPRER stress. In conclusion, our study suggests that the synergistic effects of MET and glucose deprivation suppress cell proliferation in TNBC by activating pro-apoptotic molecules through UPRER stress. These findings have potential implications for the anti-tumor application of MET in TNBC.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, PR China; Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, PR China
| | - Qingqian Zhang
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, Hangzhou, PR China
| | - Weiping He
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Yulan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Yu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, PR China
| | - Yifan Wang
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, PR China; Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, PR China.
| |
Collapse
|
7
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Tumor Progression, Microenvironments, and Therapeutics. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101599. [PMID: 36295034 PMCID: PMC9605304 DOI: 10.3390/life12101599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|