1
|
Linz D, Partridge CG, Hassett MC, Sienkiewicz N, Tyrrell K, Henderson A, Tardani R, Lu J, Steinman AD, Vesper S. Changes in Cyanobacterial Phytoplankton Communities in Lake-Water Mesocosms Treated with Either Glucose or Hydrogen Peroxide. Microorganisms 2024; 12:1925. [PMID: 39338598 PMCID: PMC11434412 DOI: 10.3390/microorganisms12091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
When cyanobacterial phytoplankton form harmful cyanobacterial blooms (HCBs), the toxins they produce threaten freshwater ecosystems. Hydrogen peroxide is often used to control HCBs, but it is broadly toxic and dangerous to handle. Previously, we demonstrated that glucose addition to lake water could suppress the abundance of cyanobacteria. In this study, glucose was compared to hydrogen peroxide for the treatment of cyanobacterial phytoplankton communities. The six-week study was conducted in the large mesocosms facility at Grand Valley State University's Annis Water Resources Institute in Michigan. To 1000 L of Muskegon Lake water, glucose was added at either 150 mg or 30 mg glucose/L. Hydrogen peroxide was added at 3 mg/L to two 1000 L mesocosms. And two mesocosms were left untreated as controls. Triplicate 100 mL samples were collected weekly from each mesocosm, which were then filtered and frozen at -80 °C for 16S rRNA amplicon sequencing. The 16S rRNA amplicon sequencing results revealed that hydrogen peroxide treatment quickly reduced the relative abundance of the cyanobacteria compared to the control mesocosms, but the cyanobacteria population returned over the course of the 6-week study. On the other hand, both glucose concentrations caused a rapid proliferation of multiple low abundance proteobacterial and bacteroidotal taxa resulting in notable increases in taxonomic richness over the duration of the study and reducing the relative abundance of cyanobacteria. Although hydrogen peroxide quickly suppressed the cyanobacteria, the population later returned to near starting levels. The glucose suppressed the cyanobacterial phytoplankton apparently by promoting competitive heterotrophic bacteria.
Collapse
Affiliation(s)
- David Linz
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Charlyn G Partridge
- Annis Water Resources Institute, Graduate School, Grand Valley State University, Allendale, MI 49441, USA
| | - Michael C Hassett
- Annis Water Resources Institute, Graduate School, Grand Valley State University, Allendale, MI 49441, USA
| | - Nathan Sienkiewicz
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Katie Tyrrell
- Annis Water Resources Institute, Graduate School, Grand Valley State University, Allendale, MI 49441, USA
| | - Aimèe Henderson
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Renee Tardani
- Annis Water Resources Institute, Graduate School, Grand Valley State University, Allendale, MI 49441, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Alan D Steinman
- Annis Water Resources Institute, Graduate School, Grand Valley State University, Allendale, MI 49441, USA
| | - Stephen Vesper
- United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| |
Collapse
|
2
|
Linz D, Struewing I, Sienkiewicz N, Steinman AD, Partridge CG, McIntosh K, Allen J, Lu J, Vesper S. Periodic Addition of Glucose Suppressed Cyanobacterial Abundance in Additive Lake Water Samples during the Entire Bloom Season. JOURNAL OF WATER RESOURCE AND PROTECTION 2024; 16:140-155. [PMID: 38487714 PMCID: PMC10936582 DOI: 10.4236/jwarp.2024.162009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Previously, we showed that prophylactic addition of glucose to Harsha Lake water samples could inhibit cyanobacteria growth, at least for a short period of time. The current study tested cyanobacterial control with glucose for the entire Harsha Lake bloom season. Water samples (1000 ml) were collected weekly from Harsha Lake during the algal-bloom season starting June 9 and lasting until August 24, 2022. To each of two 7-liter polypropylene containers, 500 ml of Harsha Lake water was added, and the containers were placed in a controlled environment chamber. To one container labeled "Treated," 0.15 g of glucose was added, and nothing was added to the container labeled "Control." After that, three 25 ml samples from each container were collected and used for 16S rRNA gene sequencing each week. Then 1000 ml of Harsha Lake water was newly collected each week, with 500 ml added to each container, along with the addition of 0.15 g glucose to the "Treated" container. Sequencing data were used to examine differences in the composition of bacterial communities between Treated and Control containers. Treatment with glucose altered the microbial communities by 1) reducing taxonomic diversity, 2) largely eliminating cyanobacterial taxa, and 3) increasing the relative abundance of subsets of non-cyanobacterial taxa (such as Proteobacteria and Actinobacteriota). These effects were observed across time despite weekly inputs derived directly from Lake water. The addition of glucose to a container receiving weekly additions of Lake water suppressed the cyanobacterial populations during the entire summer bloom season. The glucose appears to stimulate the diversity of certain bacterial taxa at the expense of the cyanobacteria.
Collapse
Affiliation(s)
- David Linz
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Ian Struewing
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | - Alan David Steinman
- Annis Water Resources Institute, Grand Valley State University, Muskegon, USA
| | | | - Kyle McIntosh
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Joel Allen
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Stephen Vesper
- United States Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Wymer L, Vesper S, Struewing I, Allen J, Lu J. Possible Antagonism between Cladosporium cladosporioides and Microcystis aeruginosa in a Freshwater Lake during Bloom Seasons. Life (Basel) 2022; 12:742. [PMID: 35629409 PMCID: PMC9145766 DOI: 10.3390/life12050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
To ensure drinking-water safety, it is necessary to understand the factors that regulate harmful cyanobacterial blooms (HCBs) and the toxins they produce. One controlling factor might be any relationship between fungi and the cyanobacteria. To test this possibility, water samples were obtained from Harsha Lake in southwestern Ohio during the 2015, 2016, and 2017 bloom seasons, i.e., late May through September. In each water sample, the concentration of the filamentous fungus Cladosporium cladosporioides was determined by quantitative PCR (qPCR) assay, and Microcystis aeruginosa microcystin-gene transcript copy number (McyG TCN) was quantified by reverse-transcriptase qPCR (RT-qPCR) analyses. The results showed that during each bloom season, the C. cladosporioides concentration and McyG TCN appeared to be interrelated. Therefore, C. cladosporioides concentrations were statistically evaluated via regression on McyG TCN in the water samples for lag times of 1 to 7 days. The regression equation developed to model the relationship demonstrated that a change in the C. cladosporioides concentration resulted in an opposing change in McyG TCN over an approximately 7-day interval. Although the interaction between C. cladosporioides and McyG TCN was observed in each bloom season, the magnitude of each component varied yearly. To better understand this possible interaction, outdoor Cladosporium spore-count data for the Harsha Lake region were obtained for late May through September of each year from the South West Ohio Air Quality Agency. The average Cladosporium spore count in the outdoor air samples was significantly greater in 2016 than in either 2015 or 2017, and the M. aeruginosa McyG TCN was significantly lower in Harsha Lake water samples in 2016 compared to 2015 or 2017. These results suggest that there might be a "balanced antagonism" between C. cladosporioides and M. aeruginosa during the bloom season.
Collapse
Affiliation(s)
| | - Stephen Vesper
- Center Environmental Measurement and Modeling, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA; (L.W.); (I.S.); (J.A.); (J.L.)
| | | | | | | |
Collapse
|