1
|
Alqurashi YE, Almalki SG, Ibrahim IM, Mohammed AO, Abd El Hady AE, Kamal M, Fatima F, Iqbal D. Biological Synthesis, Characterization, and Therapeutic Potential of S. commune-Mediated Gold Nanoparticles. Biomolecules 2023; 13:1785. [PMID: 38136655 PMCID: PMC10741590 DOI: 10.3390/biom13121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Green-synthesized gold nanoparticles demonstrate several therapeutic benefits due to their safety, non-toxicity, accessibility, and ecological acceptance. In our study, gold nanoparticles (AuNPs) were created using an extracellular extract from the fungus Schizophyllum commune (S. commune). The reaction color was observed to be a reddish pink after a 24 h reaction, demonstrating the synthesis of the nanoparticles. The myco-produced nanoparticles were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV-visible spectroscopy. The TEM pictures depicted sphere-like shapes with sizes ranging from 60 and 120 nm, with an average diameter of 90 nm, which is in agreement with the DLS results. Furthermore, the efficiency of the AuNPs' antifungal and cytotoxic properties, as well as their production of intracellular ROS, was evaluated. Our findings showed that the AuNPs have strong antifungal effects against Trichoderma sp. and Aspergillus flavus at increasing doses. Additionally, the AuNPs established a dose-dependent activity against human alveolar basal epithelial cells with adenocarcinoma (A549), demonstrating the potency of synthesized AuNPs as a cytotoxic agent. After 4 h of incubation with AuNPs, a significant increase in intracellular ROS was observed in cancer cells. Therefore, these metallic AuNPs produced by fungus (S. commune) can be used as an effective antifungal, anticancer, and non-toxic immunomodulatory delivery agent.
Collapse
Affiliation(s)
- Yaser E. Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia; (A.O.M.); (A.E.A.E.H.)
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Aisha O. Mohammed
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia; (A.O.M.); (A.E.A.E.H.)
| | - Amal E. Abd El Hady
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia; (A.O.M.); (A.E.A.E.H.)
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faria Fatima
- Department of Agriculture, Integral Institute of Agriculture, Science and Technology, Integral University, Lucknow 226026, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| |
Collapse
|
2
|
Abdel-Hadi A, Iqbal D, Alharbi R, Jahan S, Darwish O, Alshehri B, Banawas S, Palanisamy M, Ismail A, Aldosari S, Alsaweed M, Madkhali Y, Kamal M, Fatima F. Myco-Synthesis of Silver Nanoparticles and Their Bioactive Role against Pathogenic Microbes. BIOLOGY 2023; 12:biology12050661. [PMID: 37237475 DOI: 10.3390/biology12050661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Nanotechnology based on nanoscale materials is rapidly being used in clinical settings, particularly as a new approach for infectious illnesses. Recently, many physical/chemical approaches utilized to produce nanoparticles are expensive and highly unsafe to biological species and ecosystems. This study demonstrated an environmentally friendly mode of producing nanoparticles (NPs) where Fusarium oxysporum has been employed for generation of silver nanoparticles (AgNPs), which were further tested for their antimicrobial potentials against a variety of pathogenic microorganisms. The characterization of NPs was completed by UV-Vis spectroscopy, DLS and TEM, where it has been found that the NPs were mostly globular, with the size range of 50 to 100 nm. The myco-synthesized AgNPs showed prominent antibacterial potency observed as zone of inhibition of 2.6 mm, 1.8 mm, 1.5 mm, and 1.8 mm against Vibrio cholerae, Streptococcus pneumoniae, Klebsiella pneumoniae and Bacillus anthracis, respectively, at 100 µM. Similarly, at 200 µM for A. alternata, A. flavus and Trichoderma have shown zone of inhibition as 2.6 mm, 2.4 mm, and 2.1 mm, respectively. Moreover, SEM analysis of A. alternata confirmed the hyphal damage where the layers of membranes were torn off, and further EDX data analysis showed the presence of silver NPs, which might be responsible for hyphal damage. The potency of NPs may be related with the capping of fungal proteins that are produced extracellularly. Thus, these AgNPs may be used against pathogenic microbes and play a beneficial role against multi-drug resistance.
Collapse
Affiliation(s)
- Ahmed Abdel-Hadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Raed Alharbi
- Department of Public Health, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Women's University, Denton, TX 76204, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Manikanadan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmed Ismail
- Department of Public Health, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11751, Egypt
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faria Fatima
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India
| |
Collapse
|
3
|
Iqbal D, Rehman MT, Alajmi MF, Alsaweed M, Jamal QMS, Alasiry SM, Albaker AB, Hamed M, Kamal M, Albadrani HM. Multitargeted Virtual Screening and Molecular Simulation of Natural Product-like Compounds against GSK3β, NMDA-Receptor, and BACE-1 for the Management of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:ph16040622. [PMID: 37111379 PMCID: PMC10143309 DOI: 10.3390/ph16040622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The complexity of Alzheimer's disease (AD) and several side effects of currently available medication inclined us to search for a novel natural cure by targeting multiple key regulatory proteins. We initially virtually screened the natural product-like compounds against GSK3β, NMDA receptor, and BACE-1 and thereafter validated the best hit through molecular dynamics simulation (MDS). The results demonstrated that out of 2029 compounds, only 51 compounds exhibited better binding interactions than native ligands, with all three protein targets (NMDA, GSK3β, and BACE) considered multitarget inhibitors. Among them, F1094-0201 is the most potent inhibitor against multiple targets with binding energy -11.7, -10.6, and -12 kcal/mol, respectively. ADME-T analysis results showed that F1094-0201 was found to be suitable for CNS drug-likeness in addition to their other drug-likeness properties. The MDS results of RMSD, RMSF, Rg, SASA, SSE and residue interactions indicated the formation of a strong and stable association in the complex of ligands (F1094-0201) and proteins. These findings confirm the F1094-0201's ability to remain inside target proteins' binding pockets while forming a stable complex of protein-ligand. The free energies (MM/GBSA) of BACE-F1094-0201, GSK3β-F1094-0201, and NMDA-F1094-0201 complex formation were -73.78 ± 4.31 kcal mol-1, -72.77 ± 3.43 kcal mol-1, and -52.51 ± 2.85 kcal mol-1, respectively. Amongst the target proteins, F1094-0201 have a more stable association with BACE, followed by NMDA and GSK3β. These attributes of F1094-0201 indicate it as a possible option for the management of pathophysiological pathways associated with AD.
Collapse
Affiliation(s)
- Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Sharifa M Alasiry
- Critical Care Nursing, Department of Nursing, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 15341, Saudi Arabia
| | - Awatif B Albaker
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hind Muteb Albadrani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
4
|
A P, Makam P. 1,4-Dihydropyridine: synthetic advances, medicinal and insecticidal properties. RSC Adv 2022; 12:29253-29290. [PMID: 36320730 PMCID: PMC9555063 DOI: 10.1039/d2ra04589c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
1,4-Dihydropyridine (1,4-DHP) is one of the foremost notable organic scaffolds with diverse pharmaceutical applications. This study will highlight recent accomplishments in the construction of 1,4-DHP with structural and functional modifications using multi-component one-pot and green synthetic methodologies. The various intrinsic therapeutic applications, ranging from calcium channel blocker, anti-oxidative, anticancer, anti-inflammatory, anti-microbial, anti-hypertensive, anti-diabetic, anticoagulants, anti-cholinesterase, neuro-protective, and other miscellaneous activities, have been summarized with a focus on their structure-activity relationship (SAR) investigations. In addition, the insecticidal properties have been collated and discussed. Researchers in the fields of medicinal chemistry and drug development will find the summarized conclusions of this study incredibly informative, instructional, and valuable.
Collapse
Affiliation(s)
- Parthiban A
- Centre for Excellence on GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, (NIPER) Guwahati Assam India 781101
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University Arcadia Grant, P. O. Chandanwari, Premnagar Dehradun Uttarakhand India 248007
- Dr Param Laboratories Phase-1, IDA, B. N. Reddy Nagar, Cherlapally Hyderabad Telangana 500051 India
| |
Collapse
|