1
|
Jiang D, Yang M, Chen K, Jiang W, Zhang L, Ji XJ, Jiang J, Lu L. Exploiting synthetic biology platforms for enhanced biosynthesis of natural products in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 399:130614. [PMID: 38513925 DOI: 10.1016/j.biortech.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
With the rapid development of synthetic biology, researchers can design, modify, or even synthesize microorganisms de novo, and microorganisms endowed with unnatural functions can be considered "artificial life" and facilitate the development of functional products. Based on this concept, researchers can solve critical problems related to the insufficient supply of natural products, such as low yields, long production cycles, and cumbersome procedures. Due to its superior performance and unique physiological and biochemical characteristics, Yarrowia lipolytica is a favorable chassis cell used for green biomanufacturing by numerous researchers. This paper mainly reviews the development of synthetic biology techniques for Y. lipolytica and summarizes the recent research progress on the synthesis of natural products in Y. lipolytica. This review will promote the continued innovative development of Y. lipolytica by providing theoretical guidance for research on the biosynthesis of natural products.
Collapse
Affiliation(s)
- Dahai Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Manqi Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kai Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wenxuan Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Liangliang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jianchun Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, People's Republic of China
| | - Liming Lu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
2
|
Synthetic Genetic Elements, Devices, and Systems. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070945. [PMID: 35888035 PMCID: PMC9320439 DOI: 10.3390/life12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
|
3
|
Novel switchable ECF sigma factor transcription system for improving thaxtomin A production in Streptomyces. Synth Syst Biotechnol 2022; 7:972-981. [PMID: 35756964 PMCID: PMC9194655 DOI: 10.1016/j.synbio.2022.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
The application of the valuable natural product thaxtomin A, a potent bioherbicide from the potato scab pathogenic Streptomyces strains, has been greatly hindered by the low yields from its native producers. Here, we developed an orthogonal transcription system, leveraging extra-cytoplasmic function (ECF) sigma (σ) factor 17 (ECF17) and its cognate promoter Pecf17, to express the thaxtomin gene cluster and improve the production of thaxtomin A. The minimal Pecf17 promoter was determined, and a Pecf17 promoter library with a wide range of strengths was constructed. Furthermore, a cumate inducible system was developed for precise temporal control of the ECF17 transcription system in S. venezuelae ISP5230. Theoretically, the switchable ECF17 transcription system could reduce the unwanted influences from host and alleviate the burdens introduced by overexpression of heterologous genes. The yield of thaxtomin A was significantly improved to 202.1 ± 15.3 μ g/mL using the switchable ECF17 transcription system for heterologous expression of the thaxtomin gene cluster in S. venezuelae ISP5230. Besides, the applicability of this transcription system was also tested in Streptomyces albus J1074, and the titer of thaxtomin A was raised to as high as 239.3 ± 30.6 μg/mL. Therefore, the inducible ECF17 transcription system could serve as a complement of the generally used transcription systems based on strong native constitutive promoters and housekeeping σ factors for the heterologous expression of valuable products in diverse Streptomyces hosts.
Collapse
|