1
|
Saoudi B, Bariz K, Saci S, Belounis Y, Ait Issad H, Abbaci M, Mustapha MA, Nabti EH, Alenazy R, Alhussaini MS, Alyahya AAI, Alqasmi M, Alhumaidi MS, Almufarriji FM, Houali K. Enhancing Antibiotic Efficacy and Combating Biofilm Formation: Evaluating the Synergistic Potential of Origanum vulgare Essential Oil against Multidrug-Resistant Gram-Negative Bacteria. Microorganisms 2024; 12:1651. [PMID: 39203493 PMCID: PMC11356740 DOI: 10.3390/microorganisms12081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria remain a global public health issue due to the barrier imposed by their outer membrane and their propensity to form biofilms. It is becoming imperative to develop new antibacterial strategies. In this context, this study aims to evaluate the antibacterial efficacy of Origanum vulgare essential oil (OEO), alone and in combination with antibiotics, as well as its antibiofilm action against multidrug-resistant Gram-negative strains. OEO components were identified by gas chromatography-mass spectrometry (GC-MS), and antibacterial activity was assessed using the agar diffusion test and the microdilution method. Interactions between OEO and antibiotics were examined using the checkerboard method, while antibiofilm activity was analyzed using the crystal violet assay. Chemical analysis revealed that carvacrol was the major compound in OEO (61.51%). This essential oil demonstrated activity against all the tested strains, with inhibition zone diameters (IZDs) reaching 32.3 ± 1.5 mm. The combination of OEO with different antibiotics produced synergistic and additive effects, leading to a reduction of up to 98.44% in minimum inhibitory concentrations (MICs). In addition, this essential oil demonstrated an ability to inhibit and even eradicate biofilm formation. These results suggest that OEO could be exploited in the development of new molecules, combining its metabolites with antibiotics.
Collapse
Affiliation(s)
- Bilal Saoudi
- Laboratory of Analytical Biochemistry and Biotechnology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi Ouzou 15000, Algeria; (B.S.); (K.B.); (S.S.); (Y.B.)
| | - Karim Bariz
- Laboratory of Analytical Biochemistry and Biotechnology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi Ouzou 15000, Algeria; (B.S.); (K.B.); (S.S.); (Y.B.)
| | - Sarah Saci
- Laboratory of Analytical Biochemistry and Biotechnology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi Ouzou 15000, Algeria; (B.S.); (K.B.); (S.S.); (Y.B.)
| | - Yousra Belounis
- Laboratory of Analytical Biochemistry and Biotechnology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi Ouzou 15000, Algeria; (B.S.); (K.B.); (S.S.); (Y.B.)
| | - Hakima Ait Issad
- Laboratoire Ressources Naturelles, Mouloud Mammeri University of Tizi-Ouzou, Tizi Ouzou 15000, Algeria;
| | - Mohamed Abbaci
- Centre de Recherche Scientifique et Technique en Analyses Physico—Chimiques CRAPC, Bou Ismail 42004, Algeria; (M.A.); (M.A.M.)
| | - Mohamed Abou Mustapha
- Centre de Recherche Scientifique et Technique en Analyses Physico—Chimiques CRAPC, Bou Ismail 42004, Algeria; (M.A.); (M.A.M.)
| | - El-Hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de le Vie, Université de Bejaïa, Bejaïa 06000, Algeria;
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia; (M.S.A.); (A.A.I.A.); (M.A.)
| | - Mohammed Sanad Alhussaini
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia; (M.S.A.); (A.A.I.A.); (M.A.)
| | - Abdulrahman A. I. Alyahya
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia; (M.S.A.); (A.A.I.A.); (M.A.)
| | - Mohammed Alqasmi
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia; (M.S.A.); (A.A.I.A.); (M.A.)
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Saudi Arabia;
| | - Fawaz M. Almufarriji
- Medical Laboratories Department, College of Applied Medical Sciences in Al-Quwayiyah, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi Ouzou 15000, Algeria; (B.S.); (K.B.); (S.S.); (Y.B.)
| |
Collapse
|
2
|
Prerna, Chadha J, Khullar L, Mudgil U, Harjai K. A comprehensive review on the pharmacological prospects of Terpinen-4-ol: From nature to medicine and beyond. Fitoterapia 2024; 176:106051. [PMID: 38838826 DOI: 10.1016/j.fitote.2024.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.
Collapse
Affiliation(s)
- Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
4
|
Hashemi H, Shad E, Ghiasi F, Eskandari MH. Savory and Peppermint Essential Oils-Loaded Emulsions and Nanoemulsions Effects on Enterococcus faecium Isolated from Vacuum-Packed Cured Sausage. Foods 2024; 13:341. [PMID: 38275708 PMCID: PMC10815055 DOI: 10.3390/foods13020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 01/27/2024] Open
Abstract
In this work, Enterococcus faecium, the specific spoilage organism responsible for bloating spoilage of sliced vacuum-packed cured emulsion-type sausage, was isolated and identified through molecular and biochemical techniques, and then the antibacterial activities of savory-loaded nanoemulsion (SNE), savory-loaded emulsion (SE), peppermint-loaded nanoemulsion (PNE), and peppermint-loaded emulsion (PE) were investigated against spoilage microorganisms. Nanoemulsions with average particle sizes in the range of 109.27 to 118.55 nm were developed by sonication and remained more stable than emulsion samples for 2 weeks. Regardless of emulsion type, the highest antimicrobial activity was detected for savory-loaded samples. Moreover, the significant enhancements in the antimicrobial activity of SNE compared to SE were confirmed by increasing the inhibition zone diameter (17.6%) and decreasing MIC (50%) and MBC (50%) due to the higher specific surface area of smaller droplets. The TEM and SEM micrographs confirmed the inhibitory effects of SNE due to the significant changes in the cell wall integrity of Enterococcus faecium.
Collapse
Affiliation(s)
| | | | | | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (E.S.); (F.G.)
| |
Collapse
|
5
|
D'Aquila P, Sena G, Crudo M, Passarino G, Bellizzi D. Effect of Essential Oils of Apiaceae, Lamiaceae, Lauraceae, Myrtaceae, and Rutaceae Family Plants on Growth, Biofilm Formation, and Quorum Sensing in Chromobacterium violaceum, Pseudomonas aeruginosa, and Enterococcus faecalis. Microorganisms 2023; 11:1150. [PMID: 37317124 DOI: 10.3390/microorganisms11051150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
The biological role played by essential oils extracted from aromatic plants is progressively being recognized. This study evaluated the potential antibacterial activity of ten essential oils against Chromobacterium violaceum, Pseudomonas aeruginosa, and Enterococcus faecalis by measuring their minimum inhibitory concentration. We found that essential oils exert different antimicrobial effects, with Origanum vulgare and Foeniculum vulgare demonstrating the most significant inhibitory effect on bacterial growth for C. violaceum and E. faecalis. The growth of P. aeruginosa was not affected by any essential oil concentration we used. Sub-inhibitory concentrations of essential oils reduced in C. violaceum and E. faecalis biofilm formation, violacein amount, and gelatinase activity, all of which are biomarkers of the Quorum Sensing process. These concentrations significantly affect the global methylation profiles of cytosines and adenines, thus leading to the hypothesis that the oils also exert their effects through epigenetic changes. Considering the results obtained, it is possible that essential oils can find a broad spectrum of applications in counteracting microbial contamination and preserving sterility of surfaces and foods, as well as inhibiting microbial growth of pathogens, alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Michele Crudo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
6
|
Effects of Coleus amboinicus L. Essential Oil and Ethanolic Extracts on Planktonic Cells and Biofilm Formation of Microsporum canis Isolated from Feline Dermatophytosis. Antibiotics (Basel) 2022; 11:antibiotics11121734. [PMID: 36551390 PMCID: PMC9774219 DOI: 10.3390/antibiotics11121734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Microsporum canis is an important zoonotic fungus that causes dermatophytosis in domestic animals and their owners. Domestic cats are the primary reservoir for M. canis. Antifungal drugs frequently produce adverse effects on the host animal, increasing the demand for novel alternative treatments derived from nature. We evaluated the antifungal activity of Coleus amboinicus essential oil (CEO) and ethanolic extracts (CEE) against M. canis in planktonic and biofilm growth. Twelve clinical isolates of M. canis were identified in feline dermatophyte samples. Using GC-MS, 18 compounds were identified in CEO, with carvacrol being the major constituent. HPLC analysis of CEE revealed that it contained rosmarinic acid, apigenin, and caffeic acid. The planktonic growth of all M. canis isolates was inhibited by C. amboinicus extracts. The minimum inhibitory concentration at which ≥50% of the isolates were inhibited (MIC50) was 128 µg/mL (32-256 µg/mL) for both CEO and CEE. The MIC90 values of CEO and CEE were 128 and 256 µg/mL, respectively. CEO at MIC (128 µg/mL) and 2× MIC (256 µg/mL) significantly inhibited the biofilm formation of weak, moderate, and strong biofilm-producing M. canis. CEE at 2× MIC (256 µg/mL) significantly inhibited the biofilm formation of all isolates. Overall, C. amboinicus extracts inhibited planktonic growth and exhibited a significant antibiofilm effect against M. canis. Thus, C. amboinicus is a potential source of natural antifungal compounds.
Collapse
|