1
|
Correia AS, Torrado M, Costa-Coelho T, Carvalho ED, Inteiro-Oliveira S, Diógenes MJ, Pêgo AP, Santos SD, Sebastião AM, Vale N. Brain-derived neurotrophic factor modulation in response to oxidative stress and corticosterone: role of scopolamine and mirtazapine. Life Sci 2024; 358:123133. [PMID: 39413901 DOI: 10.1016/j.lfs.2024.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Major Depressive Disorder (MDD) is a very complex disease, challenging to study and manage. The complexities of MDD require extensive research of its mechanisms to develop more effective therapeutic approaches. Crucial in the context of this disease is the role of brain-derived neurotrophic factor (BDNF) signaling pathway. AIM This manuscript aims to explore the complex relationship between MDD and BDNF signaling pathway, focusing on how BDNF is modulated in response to oxidative stress and corticosterone, known to be altered in MDD and contributing to the pathology of the disorder, when treated with scopolamine and mirtazapine. METHODS To assess BDNF levels after the different treatment conditions, rat hippocampal slices and mice primary hippocampus and cortical cell culture were analyzed by immunofluorescence and Western blot. KEY FINDINGS Both mirtazapine and scopolamine under stress conditions induced by hydrogen peroxide (H2O2) and corticosterone, had a significant impact on BDNF levels, and this was distinct in different neuronal models. Mirtazapine, especially when combined with H2O2, altered BDNF expression. Scopolamine when combined with both stressors also altered BDNF levels. However, its effects varied depending on the specific neuronal model and stress condition. In accordance with BDNF results, phosphorylated tropomyosin receptor kinase B (pTrkB) presented increased activation when neuronal cells subjected to stress were treated with mirtazapine or scopolamine. SIGNIFICANCE Collectively, this study highlights the complex connection between these compounds, stress conditions, and BDNF/TrkB modulation, supporting the potential therapeutic effects of scopolamine and mirtazapine in modulating BDNF levels, even in stressful conditions.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marília Torrado
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Eva Daniela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Paula Pêgo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia Duque Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
2
|
Shi S, Ma D, Guo X, Chen Y, Yu J, Hu X, Wang X, Li T, Wang K, Zhi Y, Yang G, Lin L, Hao Q, Yang Y, Yang K, Wang J. Discovery of a Novel ASM Direct Inhibitor with a 1,5-Diphenyl-pyrazole Scaffold and Its Antidepressant Mechanism of Action. J Med Chem 2024; 67:10350-10373. [PMID: 38888140 DOI: 10.1021/acs.jmedchem.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple studies have confirmed that acid sphingomyelinase (ASM) activity is associated with depression. The discovery of direct inhibitors against ASM is of great significance for exploring antidepressants and their mechanisms of action. Herein, a series of novel phenylpyrazole analogues were rationally designed and synthesized. Among them, compound 46 exhibited potent inhibitory activity (IC50 = 0.87 μM) and good drug-like properties. In vivo studies demonstrated that compound 46 was involved in multiple antidepressant mechanisms of action, which were associated with a decline of ceramide, including increasing the Bcl-2/Bax ratio and BDNF expression, down-regulating caspase-3 and caspase-9, ameliorating oxidative stress, reducing the levels of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6, and elevating 5-HT levels in the brains of mice, respectively. These meaningful results reveal for the first time that direct inhibitors exhibit remarkable antidepressant effects in the CUMS-induced mouse model through multiple mechanisms of antidepressant action.
Collapse
Affiliation(s)
- Shaochun Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dingchen Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ximing Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yunbao Zhi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guoqing Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lizhi Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqiao Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Santonocito R, Paladino L, Vitale AM, D’Amico G, Zummo FP, Pirrotta P, Raccosta S, Manno M, Accomando S, D’Arpa F, Carini F, Barone R, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Caruso Bavisotto C. Nanovesicular Mediation of the Gut-Brain Axis by Probiotics: Insights into Irritable Bowel Syndrome. BIOLOGY 2024; 13:296. [PMID: 38785778 PMCID: PMC11117693 DOI: 10.3390/biology13050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Dysbiosis, influenced by poor diet or stress, is associated with various systemic diseases. Probiotic supplements are recognized for stabilizing gut microbiota and alleviating gastrointestinal issues, like irritable bowel syndrome (IBS). This study focused on the tryptophan pathways, which are important for the regulation of serotonin levels, and on host physiology and behavior regulation. METHODS Nanovesicles were isolated from the plasma of subjects with chronic diarrhea, both before and after 60 days of consuming a probiotic mix (Acronelle®, Bromatech S.r.l., Milan, Italy). These nanovesicles were assessed for the presence of Tryptophan 2,3-dioxygenase 2 (TDO 2). Furthermore, the probiotics mix, in combination with H2O2, was used to treat HT29 cells to explore its cytoprotective and anti-stress effect. RESULTS In vivo, levels of TDO 2 in nanovesicles were enhanced in the blood after probiotic treatment, suggesting a role in the gut-brain axis. In the in vitro model, a typical H2O2-induced stress effect occurred, which the probiotics mix was able to recover, showing a cytoprotective effect. The probiotics mix treatment significantly reduced the heat shock protein 60 kDa levels and was able to preserve intestinal integrity and barrier function by restoring the expression and redistribution of tight junction proteins. Moreover, the probiotics mix increased the expression of TDO 2 and serotonin receptors. CONCLUSIONS This study provides evidence for the gut-brain axis mediation by nanovesicles, influencing central nervous system function.
Collapse
Affiliation(s)
- Radha Santonocito
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Paolo Zummo
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Paolo Pirrotta
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Samuele Raccosta
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Mauro Manno
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Salvatore Accomando
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialities “G D‘Alessandro”, PROMISE, University of Palermo, 90127 Palermo, Italy;
| | - Francesco D’Arpa
- Department of Surgical, Oncological and Stomatological Disciplines, DICHIRONS, University of Palermo, 90127 Palermo, Italy;
| | - Francesco Carini
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Rosario Barone
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| |
Collapse
|
4
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
5
|
Correia AS, Marques L, Cardoso A, Vale N. Exploring the Role of Drug Repurposing in Bridging the Hypoxia-Depression Connection. MEMBRANES 2023; 13:800. [PMID: 37755222 PMCID: PMC10537732 DOI: 10.3390/membranes13090800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
High levels of oxidative stress are implicated in hypoxia, a physiological response to low levels of oxygen. Evidence supports a connection between this response and depression. Previous studies indicate that tryptophan hydroxylase can be negatively affected in hypoxia, impairing serotonin synthesis and downstream pathways. Some studies also hypothesize that increasing hypoxia-inducible factor-1 (HIF-1) levels may be a new therapeutic modality for depression. Hence, this study delved into the influence of hypoxia on the cellular response to drugs designed to act in depression. By the induction of hypoxia in SH-SY5Y cells through a hypoxia incubator chamber or Cobalt Chloride treatment, the effect of Mirtazapine, an antidepressant, and other drugs that interact with serotonin receptors (TCB-2, Dextromethorphan, Ketamine, Quetiapine, Scopolamine, Celecoxib, and Lamotrigine) on SH-SY5Y cellular viability and morphology was explored. The selection of drugs was initially conducted by literature search, focusing on compounds with established potential for employment in depression therapy. Subsequently, we employed in silico approaches to forecast their ability to traverse the blood-brain barrier (BBB). This step was particularly pertinent as we aimed to assess their viability for inducing potential antidepressant effects. The effect of these drugs in hypoxia under the inhibition of HIF-1 by Echinomycin was also tested. Our results revealed that all the potential repurposed drugs promoted cell viability, especially when hypoxia was chemically induced. When combined with Echinomycin, all drugs decreased cellular viability, possibly by the inability to interact with HIF-1.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Lara Marques
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
6
|
Rao STRB, Turek I, Ratcliffe J, Beckham S, Cianciarulo C, Adil SSBMY, Kettle C, Whelan DR, Irving HR. 5-HT 3 Receptors on Mitochondria Influence Mitochondrial Function. Int J Mol Sci 2023; 24:ijms24098301. [PMID: 37176009 PMCID: PMC10179570 DOI: 10.3390/ijms24098301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The 5-hydroxytryptamine 3 (5-HT3) receptor belongs to the pentameric ligand-gated cation channel superfamily. Humans have five different 5-HT3 receptor subunits: A to E. The 5-HT3 receptors are located on the cell membrane, but a previous study suggested that mitochondria could also contain A subunits. In this article, we explored the distribution of 5-HT3 receptor subunits in intracellular and cell-free mitochondria. Organelle prediction software supported the localization of the A and E subunits on the inner membrane of the mitochondria. We transiently transfected HEK293T cells that do not natively express the 5-HT3 receptor with an epitope and fluorescent protein-tagged 5HT3A and 5HT3E subunits. Fluorescence microscopy and cell fractionation indicated that both subunits, A and E, localized to the mitochondria, while transmission electron microscopy revealed the location of the subunits on the mitochondrial inner membrane, where they could form heteromeric complexes. Cell-free mitochondria isolated from cell culture media colocalized with the fluorescent signal for A subunits. The presence of A and E subunits influenced changes in the membrane potential and mitochondrial oxygen consumption rates upon exposure to serotonin; this was inhibited by pre-treatment with ondansetron. Therefore, it is likely that the 5-HT3 receptors present on mitochondria directly impact mitochondrial function and that this may have therapeutic implications.
Collapse
Affiliation(s)
- Santosh T R B Rao
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Ilona Turek
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Bio Imaging Platform, La Trobe University, Kingsbury Dr, Bundoora, VIC 3086, Australia
| | - Simone Beckham
- Regional Science Operations, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Cassandra Cianciarulo
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Siti S B M Y Adil
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Christine Kettle
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Helen R Irving
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| |
Collapse
|