1
|
Ferreira GW, Samulewski RB, Ivashita FF, Paesano A, Urbano A, Zaia DAM. Did Salts in Seawater Play an Important Role in the Adsorption of Molecules on Minerals in the Prebiotic Earth? The Case of the Adsorption of Thiocyanate onto Forsterite-91. ORIGINS LIFE EVOL B 2023; 53:127-156. [PMID: 37676558 DOI: 10.1007/s11084-023-09640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Thiocyanate may have played as important a role as cyanide in the synthesis of several molecules. However, its concentration in the seas of the prebiotic Earth could have been very low. Thiocyanate was dissolved in two different seawaters: a) a composition that comes close to the seawater of the prebiotic Earth (seawater-B, Ca2+ and Cl-) and b) a seawater (seawater-A, Mg2+ and SO42-) that could be related to the seas of Mars and other moons in the solar system. In addition, forsterite-91 was a very common mineral on the prebiotic Earth and Mars. Two important results are reported in this work: 1) thiocyanate adsorbed onto forsterite-91 and 2) the amount of thiocyanate adsorbed, adsorption thermodynamic, and adsorption kinetic depend on the composition of the artificial seawater. For all experiments, the adsorption was thermodynamically favorable (ΔG < 0). The adsorption data fitted well in the Freundlich and Langmuir-Freundlich models. When dissolving thiocyanate in seawater 4.0-A-Gy and seawater 4.0-B-Gy, the adsorption of thiocyanate onto forsterite-91 was ruled by enthalpy and entropy, respectively. As shown by n values, the thiocyanate/foraterite-91 system is heterogeneous. For all kinetic data, the pseudo-first-order model presented the best fit. The constant rate for thiocyanate dissolved in seawater 4.0-A-Gy was twice that compared to thiocyanate dissolved in seawater 4.0-B-Gy or ultrapure-water. The interaction between thiocyanate and Fe2+ of forsterite-91 was with the nitrogen atom of thiocyanate. In the presence of thiocyanate, sulfate interacts with forsterite-91 as an inner-sphere surface complex, and without thiocyanate as an outer-sphere surface complex.
Collapse
Affiliation(s)
- Giulio Wilgner Ferreira
- Laboratório de Química Prebiótica-LQP, Departamento de Química, Universidade Estadual de Londrina, CEP 86057-970, Londrina, PR, Brazil
| | - Rafael Block Samulewski
- COLIQ - Coordenação de Licenciatura em Química, Universidade Tecnológica Federal do Paraná UTFPR Campus Apucarana, CEP 86812-460, Apucarana, PR, Brazil.
| | | | - Andrea Paesano
- Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
- Departamento de Física Teórica e Experimental, UFRN, Av. Sen. Salgado Filho, 3000, Lagoa Nova, 59078-970, Natal, RN, Brazil
| | - Alexandre Urbano
- Departamento de Física-CCE, Universidade Estadual de Londrina, CEP 86057-970, Londrina, PR, Brazil
| | - Dimas Augusto Morozin Zaia
- Laboratório de Química Prebiótica-LQP, Departamento de Química, Universidade Estadual de Londrina, CEP 86057-970, Londrina, PR, Brazil.
| |
Collapse
|
2
|
Kosmulski M. The pH dependent surface charging and points of zero charge. X. Update. Adv Colloid Interface Sci 2023; 319:102973. [PMID: 37573830 DOI: 10.1016/j.cis.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Surfaces are often characterized by their points of zero charge (PZC) and isoelectric points (IEP). Different authors use these terms for different quantities, which may be equal to the actual PZC under certain conditions. Several popular methods lead to results which are inappropriately termed PZC. This present review is limited to zero-points obtained in the presence of inert electrolytes (halides, nitrates, and perchlorates of the 1st group metals). IEP are reported for all kinds of materials. PZC of metal oxides obtained as common intersection points of potentiometric curves for 3 or more ionic strengths (or by means of equivalent methods) are also reported, while the apparent PZC obtained by mass titration, pH-drift method, etc. are deliberately neglected. The results published in the recent publications and older results overlooked in the previous compilations by the same author are reported. The PZC/IEP are accompanied by information on the temperature and on the nature and concentration of supporting electrolyte (if available). The references to previous reviews by the same author allow to compare the newest results with the PZC/IEP of similar materials from the older literature.
Collapse
Affiliation(s)
- Marek Kosmulski
- Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.
| |
Collapse
|