1
|
Wu S, Yu W, Fu X, Yu X, Ye Z, Zhang M, Qiu Y, Ma B. Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Molecules 2024; 29:4972. [PMID: 39459340 PMCID: PMC11510534 DOI: 10.3390/molecules29204972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA synthesis mechanism, rapid amplification efficiency, and capability to operate at room temperature, among other advantages. In addition, strategies and case studies of RPA in combination with other technologies are detailed to explore the advantages and potential of these integrated approaches for virus detection. Finally, the development prospect of RPA technology is prospected.
Collapse
Affiliation(s)
| | | | - Xianshu Fu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (S.W.); (W.Y.); (X.Y.); (Z.Y.); (M.Z.); (Y.Q.); (B.M.)
| | | | | | | | | | | |
Collapse
|
2
|
Sun A, Wang L, Zhang Y, Yang X, Su Y, Wu X. Development and Application of a Duplex RT-RPA Assay for the Simultaneous Detection of Cymbidium mosaic virus and Odontoglossum ringspot virus. Viruses 2024; 16:543. [PMID: 38675886 PMCID: PMC11054353 DOI: 10.3390/v16040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are among the world's most serious and widespread orchid viruses; they often infect orchids, causing devastating losses to the orchid industry. Therefore, it is critical to establish a method that can rapidly and accurately detect viruses in the field using simple instruments, which will largely reduce the further spread of viruses and improve the quality of the orchid industry and is suitable for mass promotion and application at grassroots agrotechnical service points. In this investigation, we established a rapid amplification method for virus detection at 39 °C for 35 min to detect the presence of CymMV and ORSV simultaneously, sensitively, and specifically in orchids. Primers for the capsid protein (CP)-encoding genes of both viruses were designed and screened, and the reaction conditions were optimized. The experimental amplification process was completed in just 35 min at 39 °C. There were no instances of nonspecific amplification observed when nine other viruses were present. The RPA approach had detection limits of 104 and 103 copies for pMD19T-CymMV and pMD19T-ORSV, respectively. Moreover, the duplex RT-RPA investigation confirmed sensitivity and accuracy via a comparison of detection results from 20 field samples with those of a gene chip. This study presents a precise and reliable detection method for CymMV and ORSV using RT-RPA. The results demonstrate the potential of this method for rapid virus detection. It is evident that this method could have practical applications in virus detection processes.
Collapse
Affiliation(s)
- Aiqing Sun
- Yunnan Provincial Key Laboratory of Flower Breeding, Flower Research Institute, Yunnan Academy of Agriculture Science, Panlong District, Kunming 650025, China; (A.S.); (Y.Z.); (X.Y.); (Y.S.)
- School of Agriculture, Yunnan University, Chenggong District, Kunming 650091, China
| | - Lihua Wang
- Yunnan Provincial Key Laboratory of Flower Breeding, Flower Research Institute, Yunnan Academy of Agriculture Science, Panlong District, Kunming 650025, China; (A.S.); (Y.Z.); (X.Y.); (Y.S.)
| | - Yiping Zhang
- Yunnan Provincial Key Laboratory of Flower Breeding, Flower Research Institute, Yunnan Academy of Agriculture Science, Panlong District, Kunming 650025, China; (A.S.); (Y.Z.); (X.Y.); (Y.S.)
| | - Xiumei Yang
- Yunnan Provincial Key Laboratory of Flower Breeding, Flower Research Institute, Yunnan Academy of Agriculture Science, Panlong District, Kunming 650025, China; (A.S.); (Y.Z.); (X.Y.); (Y.S.)
| | - Yan Su
- Yunnan Provincial Key Laboratory of Flower Breeding, Flower Research Institute, Yunnan Academy of Agriculture Science, Panlong District, Kunming 650025, China; (A.S.); (Y.Z.); (X.Y.); (Y.S.)
| | - Xuewei Wu
- School of Agriculture, Yunnan University, Chenggong District, Kunming 650091, China
| |
Collapse
|
3
|
Ngoc LTN, Lee YC. Current Trends in RNA Virus Detection via Nucleic Acid Isothermal Amplification-Based Platforms. BIOSENSORS 2024; 14:97. [PMID: 38392016 PMCID: PMC10886876 DOI: 10.3390/bios14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Ribonucleic acid (RNA) viruses are one of the major classes of pathogens that cause human diseases. The conventional method to detect RNA viruses is real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), but it has some limitations. It is expensive and time-consuming, with infrastructure and trained personnel requirements. Its high throughput requires sophisticated automation and large-scale infrastructure. Isothermal amplification methods have been explored as an alternative to address these challenges. These methods are rapid, user-friendly, low-cost, can be performed in less specialized settings, and are highly accurate for detecting RNA viruses. Microfluidic technology provides an ideal platform for performing virus diagnostic tests, including sample preparation, immunoassays, and nucleic acid-based assays. Among these techniques, nucleic acid isothermal amplification methods have been widely integrated with microfluidic platforms for RNA virus detection owing to their simplicity, sensitivity, selectivity, and short analysis time. This review summarizes some common isothermal amplification methods for RNA viruses. It also describes commercialized devices and kits that use isothermal amplification techniques for SARS-CoV-2 detection. Furthermore, the most recent applications of isothermal amplification-based microfluidic platforms for RNA virus detection are discussed in this article.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Ma X, Bai X, Li H, Ding J, Zhang H, Qiu Y, Wang J, Liu X, Liu M, Tang B, Xu N. A rapid and visual detection assay for Clonorchis sinensis based on recombinase polymerase amplification and lateral flow dipstick. Parasit Vectors 2023; 16:165. [PMID: 37208693 DOI: 10.1186/s13071-023-05774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Fish-borne zoonotic clonorchiasis, caused by Clonorchis sinensis, is an emerging public health problem in several countries with more than 15 million people infected globally. However, a lack of accurate point-of-care (POC) diagnostic tests in resource-limited areas is still a critical barrier to effective treatment and control of clonorchiasis. The development of the recombinase polymerase amplification(RPA) assay, a POC diagnostic test based on the amplification of pathogen DNA, has provided a new, simple and inexpensive tool for disease detection with high sensitivity and specificity. METHODS A novel RPA method was developed based on specific primers and probes, and combined with the dipstick, to allow for the rapid and intuitive detection of C. sinensis through the amplification of the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene. The lower limit of detection for the combined RPA/lateral flow dipstick (RPA-LFD) assay was evaluated using dilutions of the target DNA sequence. Cross-reactivity was evaluated using genomic DNA from 10 additional control parasites. Forty human clinical stool samples were tested to verify its performance. RESULTS The evaluated primers designed from the C. sinensis COX1 region can be used to detect adult worms, metacercariae, and eggs at 39 °C within 20 min, and the results can be visually observed using the LFD. The detection limit of pathogen genomic DNA was as low as 10 fg, and the number of metacercaria(e) in fish and egg(s) in faeces were both as low as one. This improved the sensitivity of low-infection detection tremendously. The test is species-specific, and no other related control parasites were detected. In human stool samples with eggs per gram (EPG) > 50, the RPA-LFD assay was performed consistent with conventional Kato-Katz (KK) and PCR methods. CONCLUSION The established RPA-LFD assay provides a powerful tool for the diagnosis and epidemiological survey of C. sinensis from human and animal samples, and has important implications for the effective control of clonorchiasis.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Hongchang Li
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, Shandong, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Huiyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Yangyuan Qiu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Jing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China.
| | - Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|