1
|
Bairwa A, Dipta B, Siddappa S, Singh B, Sharma N, Naga KC, Mhatre PH, Sharma S, Venkatasalam EP, Singh B. Kaolinite nanoclay-shielded dsRNA drenching for management of Globodera pallida: An environmentally friendly pest management approach. PROTOPLASMA 2024; 261:965-974. [PMID: 38607379 DOI: 10.1007/s00709-024-01950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Globodera pallida, an obligate sedentary endoparasite, is a major economic pest that causes substantial potato yield losses. This research aimed to study the effects of gene silencing of three FMRFamide-like peptides (FLPs) genes to reduce G. pallida infestation on potato plants by using kaolinite nanoclay as a carrier to deliver dsRNAs via drenching. A dsRNA dosage of 2.0 mg/ml silenced flp-32c by 89.5%, flp-32p by 94.6%, and flp-2 by 94.3%. J2s incubated for 5 and 10 h showed no phenotypic changes. However, J2s of G. pallida efficiently uptake dsRNA of all targeted genes after 15 h of incubation. On the other hand, J2s that had been kept for 24 h had a rigid and straight appearance. Under fluorescence microscopy, all dsRNA-treated nematodes showed fluorescein isothiocyanate (FITC) signals in the mouth, nervous system, and digestive system. The untreated population of J2s did not show any FITC signals and was mobile as usual. The drenching of potato cultivar Kufri Jyoti with the dsRNA-kaolinite formulations induced deformation and premature death of J2s, compared with untreated J2s that entered J3 or J4 stages. This study validates that the nanocarrier-delivered RNAi system could be employed effectively to manage G. pallida infestations.
Collapse
Affiliation(s)
- Aarti Bairwa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Baljeet Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Neha Sharma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Kailash C Naga
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Priyank H Mhatre
- ICAR-Central Potato Research Station, Udhagamandalam, 643004, Tamil Nadu, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - E P Venkatasalam
- ICAR-Central Potato Research Station, Udhagamandalam, 643004, Tamil Nadu, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| |
Collapse
|
2
|
Hojsgaard D, Nagel M, Feingold SE, Massa GA, Bradshaw JE. New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis. Biomolecules 2024; 14:614. [PMID: 38927018 PMCID: PMC11202281 DOI: 10.3390/biom14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop's biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato's natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Sergio E. Feingold
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
| | - Gabriela A. Massa
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce B7620, Argentina
| | | |
Collapse
|
3
|
Clot CR, Klein D, Koopman J, Schuit C, Engelen CJM, Hutten RCB, Brouwer M, Visser RGF, Jurani M, van Eck HJ. Crossover shortage in potato is caused by StMSH4 mutant alleles and leads to either highly uniform unreduced pollen or sterility. Genetics 2024; 226:iyad194. [PMID: 37943687 PMCID: PMC10763545 DOI: 10.1093/genetics/iyad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes. However, if CO shortage is combined with another meiotic alteration that restitutes the first meiotic division, then uniform and balanced unreduced male gametes, essentially composed of nonrecombinant homologs, are produced. This mitosis-like division is of interest to breeders because it transmits most of the parental heterozygosity to the gametes. In potato, CO shortage, a recessive trait previously referred to as desynapsis, was tentatively mapped to chromosome 8. In this article, we have fine-mapped the position of the CO shortage locus and identified StMSH4, an essential component of the class I CO pathway, as the most likely candidate gene. A 7 base-pair insertion in the second exon of StMSH4 was found to be associated with CO shortage in our mapping population. We also identified a second allele with a 3,820 base-pair insertion and confirmed that both alleles cannot complement each other. Such nonfunctional alleles appear to be common in potato cultivars. More than half of the varieties we tested are carriers of mutational load at the StMSH4 locus. With this new information, breeders can choose to remove alleles associated with CO shortage from their germplasm to improve fertility or to use them to produce highly uniform unreduced male gametes in alternative breeding schemes.
Collapse
Affiliation(s)
- Corentin R Clot
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Dennis Klein
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Joey Koopman
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Cees Schuit
- Bejo Zaden B.V., Warmenhuizen, 1749 CZ, The Netherlands
| | - Christel J M Engelen
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Ronald C B Hutten
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Martina Jurani
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| |
Collapse
|
4
|
Jiang X, Li D, Du H, Wang P, Guo L, Zhu G, Zhang C. Genomic features of meiotic crossovers in diploid potato. HORTICULTURE RESEARCH 2023; 10:uhad079. [PMID: 37323232 PMCID: PMC10261879 DOI: 10.1093/hr/uhad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 06/17/2023]
Abstract
Meiotic recombination plays an important role in genome evolution and crop improvement. Potato (Solanum tuberosum L.) is the most important tuber crop in the world, but research about meiotic recombination in potato is limited. Here, we resequenced 2163 F2 clones derived from five different genetic backgrounds and identified 41 945 meiotic crossovers. Some recombination suppression in euchromatin regions was associated with large structural variants. We also detected five shared crossover hotspots. The number of crossovers in each F2 individual from the accession Upotato 1 varied from 9 to 27, with an average of 15.5, 78.25% of which were mapped within 5 kb of their presumed location. We show that 57.1% of the crossovers occurred in gene regions, with poly-A/T, poly-AG, AT-rich, and CCN repeats enriched in the crossover intervals. The recombination rate is positively related with gene density, SNP density, Class II transposon, and negatively related with GC density, repeat sequence density and Class I transposon. This study deepens our understanding of meiotic crossovers in potato and provides useful information for diploid potato breeding.
Collapse
Affiliation(s)
- Xiuhan Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hui Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangtao Zhu
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | | |
Collapse
|