1
|
Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol 2024; 15:1456060. [PMID: 39464881 PMCID: PMC11502315 DOI: 10.3389/fimmu.2024.1456060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Monkeypox (mpox) is a zoonotic illness caused by the monkeypox virus (MPXV), with higher health concerns among people who are pregnant, children, and persons who are immunocompromised, including people with untreated and advanced HIV disease. Significant progress has been made in developing vaccines against mpox, yet critical challenges and limitations persist in ensuring their effectiveness, safety, and accessibility. The pertinence of this review is highlighted by the World Health Organization's declaration of a global health emergency on August 14, 2024, due to the recent mpox outbreak, underscoring the critical necessity for effective vaccine solutions in the face of a rapidly evolving virus. Here, we comprehensively analyze various vaccine platforms utilized in mpox prevention, including attenuated and non-replicating virus vaccines, viral vector-based vaccines, recombinant protein vaccines, and DNA and mRNA vaccines. We evaluate the advantages and limitations of each platform, highlighting the urgent need for ongoing research and innovation to enhance vaccine efficacy and safety. Recent advancements, such as incorporating immunostimulatory sequences, improved delivery systems, and developing polyvalent vaccines, are explored for their potential to offer broader protection against diverse orthopoxvirus strains. This work underscores the need to optimize currently available vaccines and investigate novel vaccination strategies to address future public health emergencies effectively. By focusing on these advanced methodologies, we aim to contribute to the development of robust and adaptable vaccine solutions for mpox and other related viral threats.
Collapse
Affiliation(s)
- Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Paul Mondragon-Teran
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| |
Collapse
|
2
|
Morino E, Mine S, Tomita N, Uemura Y, Shimizu Y, Saito S, Suzuki T, Okumura N, Iwasaki H, Terada J, Ainai A, Sakai Y, Park E, Seki S, Akazawa D, Shimojima M, Shiwa-Sudo N, Virhuez-Mendoza M, Miyauchi K, Moriyama S, Iwata-Yoshikawa N, Harada M, Harada S, Hishiki T, Kotaki R, Matsumura T, Miyamoto S, Kanno T, Isogawa M, Watashi K, Nagata N, Ebihara H, Takahashi Y, Maeda K, Matano T, Wakita T, Suzuki T, Sugiura W, Ohmagari N, Ujiie M. Mpox Neutralizing Antibody Response to LC16m8 Vaccine in Healthy Adults. NEJM EVIDENCE 2024; 3:EVIDoa2300290. [PMID: 38411447 DOI: 10.1056/evidoa2300290] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND: Vaccination against mpox (formerly known as monkeypox), an infectious disease caused by the monkeypox virus (MPXV), is needed to prevent outbreaks and consequent public health concerns. The LC16m8 vaccine, a dried cell-cultured proliferative live attenuated vaccinia virus–based vaccine, was approved in Japan against smallpox and mpox. However, its immunogenicity and efficacy against MPXV have not been fully assessed. We assessed the safety and immunogenicity of LC16m8 against MPXV in healthy adults. METHODS: We conducted a single-arm study that included 50 participants who were followed up for 168 days postvaccination. The primary end point was the neutralizing antibody seroconversion rate against MPXVs, including the Zr599 and Liberia strains, on day 28. The secondary end points included the vaccine “take” (major cutaneous reaction) rate, neutralizing titer kinetics against MPXV and vaccinia virus (LC16m8) strains, and safety outcomes. RESULTS: Seroconversion rates on day 28 were 72% (36 of 50), 70% (35 of 50), and 88% (44 of 50) against the Zr599 strain, the Liberia strain, and LC16m8, respectively. On day 168, seroconversion rates decreased to 30% (15 of 50) against the Zr599 and Liberia strains and to 76% (38 of 50) against LC16m8. The vaccine “take” (broad definition) rate on day 14 was 94% (46 of 49). Adverse events (AEs), including common solicited cutaneous reactions, occurred in 98% (45 of 48) of participants; grade 3 severity AEs occurred in 16% (8 of 50). No deaths, serious AEs, or mpox onset incidences were observed up to day 168. CONCLUSIONS: The LC16m8 vaccine generated neutralizing antibody responses against MPXV in healthy adults. No serious safety concerns occurred with LC16m8 use. (Funded by the Ministry of Health, Labour and Welfare of Japan; Japan Registry of Clinical Trials number, jRCTs031220171.)
Collapse
Affiliation(s)
- Eriko Morino
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo
- Department Respiratory Medicine, National Center for Global Health and Medicine, Tokyo
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo
| | - Sohtaro Mine
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Noriko Tomita
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo
| | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo
| | - Tetsuya Suzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo
| | - Nobumasa Okumura
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo
| | - Haruka Iwasaki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo
| | - Junko Terada
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo
- Department Respiratory Medicine, National Center for Global Health and Medicine, Tokyo
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Eunsil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo
| | - Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | | | - Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | | | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | - Sho Miyamoto
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo
| | | | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo
| | - Mugen Ujiie
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo
| |
Collapse
|
3
|
Rohilla R, Mohanty A, Satapathy P, Sah S, Rustagi S, Al-Qaim ZH, Sah R. Monkeypox outbreak in non-endemic countries: An ongoing outbreak. INTERNATIONAL JOURNAL OF SURGERY OPEN 2023; 55:100616. [PMID: 37197751 PMCID: PMC10156650 DOI: 10.1016/j.ijso.2023.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Ranjana Rohilla
- Department of Microbiology, Shree Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | | | - Sanjit Sah
- Global Consortium for Public Health and Research, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, 442001, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
- SR Sanjeevani Hospital, Kalyanpur-10, Siraha, Nepal
| | - Zahraa Haleem Al-Qaim
- Department of Anesthesia Techniques, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, 46000, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, 411000, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India
| |
Collapse
|