1
|
Vidovic M, Lapp HS, Weber C, Plitzko L, Seifert M, Steinacker P, Otto M, Hermann A, Günther R. Comparative analysis of neurofilaments and biomarkers of muscular damage in amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae288. [PMID: 39239150 PMCID: PMC11375854 DOI: 10.1093/braincomms/fcae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
Diagnosis of the fatal neurodegenerative disease amyotrophic lateral sclerosis is challenging. Neurofilaments, indicative of neuronal damage, along with creatine kinase, creatinine, myoglobin, and troponin T, representing muscular damage, have been identified as promising fluid biomarkers. This study aims to comprehensively assess and compare their diagnostic and prognostic potential in a 'real-world' cohort of patients with amyotrophic lateral sclerosis. About 77 patients with amyotrophic lateral sclerosis and its clinical variants, and 26 age- and sex-matched controls with various neuromuscular and neurodegenerative diseases, were retrospectively included in this monocentric, cross-sectional study. Neurofilaments in cerebrospinal fluid and biomarkers of muscular damage in serum were measured and correlated with demographic features, motor function, survival time, clinical phenotypes, and the extent of upper and lower motor neuron involvement. Neurofilament, myoglobin, and troponin T concentrations were higher in patients with amyotrophic lateral sclerosis compared to disease controls. Higher neurofilament levels correlated with lower motor function and faster disease progression rate, while higher creatine kinase and creatinine concentrations were linked to preserved motor function. In contrast, troponin T elevation indicated poorer fine and gross motor functions. Increased neurofilament levels were associated with shorter survival, whereas biomarkers of muscular damage lacked survival correlation. Neurofilament concentrations were higher in classical amyotrophic lateral sclerosis than in progressive muscular atrophy, while myoglobin and troponin T levels were elevated in progressive muscular atrophy compared to primary lateral sclerosis. Neurofilaments were predominantly linked to upper motor neuron involvement. Our findings confirmed the robust diagnostic and prognostic value of neurofilaments in amyotrophic lateral sclerosis. Elevated neurofilament concentrations were associated with higher disease severity, faster disease progression, shorter survival, and predominant upper motor neuron degeneration. Biomarkers of muscular damage were inferior in distinguishing amyotrophic lateral sclerosis from other neuromuscular and neurodegenerative diseases. However, they may serve as complementary biomarkers and support in discriminating clinical variants of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Hanna Sophie Lapp
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Constanze Weber
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Lydia Plitzko
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Michael Seifert
- Carl Gustav Carus Faculty of Medicine, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Dresden 01307, Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section 'Albrecht Kossel', Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Rostock 18147, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Dresden, Dresden 01307, Germany
| |
Collapse
|
2
|
Wohnrade C, Seeliger T, Gingele S, Bjelica B, Skripuletz T, Petri S. Diagnostic value of neurofilaments in differentiating motor neuron disease from multifocal motor neuropathy. J Neurol 2024; 271:4441-4452. [PMID: 38683209 PMCID: PMC11233354 DOI: 10.1007/s00415-024-12355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To evaluate the performance of serum neurofilament light chain (NfL) and cerebrospinal fluid (CSF) phosphorylated neurofilament heavy chain (pNfH) as diagnostic biomarkers for the differentiation between motor neuron disease (MND) and multifocal motor neuropathy (MMN). METHODS This retrospective, monocentric study included 16 patients with MMN and 34 incident patients with MND. A subgroup of lower motor neuron (MN) dominant MND patients (n = 24) was analyzed separately. Serum NfL was measured using Ella automated immunoassay, and CSF pNfH was measured using enzyme-linked immunosorbent assay. Area under the curve (AUC), optimal cutoff values (Youden's index), and correlations with demographic characteristics were calculated. RESULTS Neurofilament concentrations were significantly higher in MND compared to MMN (p < 0.001), and serum NfL and CSF pNfH correlated strongly with each other (Spearman's rho 0.68, p < 0.001). Serum NfL (AUC 0.946, sensitivity and specificity 94%) and CSF pNfH (AUC 0.937, sensitivity 90.0%, specificity 100%) performed excellent in differentiating MND from MMN. Optimal cutoff values were ≥ 44.15 pg/mL (serum NfL) and ≥ 715.5 pg/mL (CSF pNfH), respectively. Similar results were found when restricting the MND cohort to lower MN dominant patients. Only one MMN patient had serum NfL above the cutoff. Two MND patients presented with neurofilament concentrations below the cutoffs, both featuring a slowly progressive disease. CONCLUSION Neurofilaments are valuable supportive biomarkers for the differentiation between MND and MMN. Serum NfL and CSF pNfH perform similarly well and elevated neurofilaments in case of diagnostic uncertainty underpin MND diagnosis.
Collapse
Affiliation(s)
- Camilla Wohnrade
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| | - Tabea Seeliger
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Bogdan Bjelica
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
- Center for Systems Neuroscience (ZSN) Hannover, 30559, Hannover, Germany
| |
Collapse
|
3
|
Vacchiano V, Bonan L, Liguori R, Rizzo G. Primary Lateral Sclerosis: An Overview. J Clin Med 2024; 13:578. [PMID: 38276084 PMCID: PMC10816328 DOI: 10.3390/jcm13020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder which causes the selective deterioration of the upper motor neurons (UMNs), sparing the lower motor neuron (LMN) system. The clinical course is defined by a progressive motor disability due to muscle spasticity which typically involves lower extremities and bulbar muscles. Although classically considered a sporadic disease, some familiar cases and possible causative genes have been reported. Despite it having been recognized as a rare but distinct entity, whether it actually represents an extreme end of the motor neuron diseases continuum is still an open issue. The main knowledge gap is the lack of specific biomarkers to improve the clinical diagnostic accuracy. Indeed, the diagnostic imprecision, together with some uncertainty about overlap with UMN-predominant ALS and Hereditary Spastic Paraplegia (HSP), has become an obstacle to the development of specific therapeutic trials. In this study, we provided a comprehensive analysis of the existing literature, including neuropathological, clinical, neuroimaging, and neurophysiological features of the disease, and highlighting the controversies still unsolved in the differential diagnoses and the current diagnostic criteria. We also discussed the current knowledge gaps still present in both diagnostic and therapeutic fields when approaching this rare condition.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| | - Luigi Bonan
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Rocco Liguori
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Rizzo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| |
Collapse
|
4
|
Lv X, Cheng Z, Wang Q, Gao F, Dai L, Du C, Liu C, Xie Q, Shen Y, Shi J. High burdens of phosphorylated tau protein and distinct precuneus atrophy in sporadic early-onset Alzheimer's disease. Sci Bull (Beijing) 2023; 68:2817-2826. [PMID: 37919158 DOI: 10.1016/j.scib.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/16/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare devastating subclassification of Alzheimer's disease (AD). EOAD affects individuals <65 years old, and accounts for 5%-10% of all AD cases. Previous studies on EOAD primarily focused on familial forms, whereas research on sporadic EOAD (sEOAD), which represents 85%-90% of EOAD cases, is limited. In this prospective cohort study, participants were recruited between 2018 and 2023 and included patients with sEOAD (n = 110), late-onset AD (LOAD, n = 89), young controls (YC, n = 50), and older controls (OC, n = 25). All AD patients fulfilled the diagnostic criteria based on biomarker evidence. Familial EOAD patients or non-AD dementia patients were excluded. Single molecule array technology was used to measure fluid biomarkers, including cerebrospinal fluid (CSF) and plasma amyloid beta (Aβ) 40, Aβ42, phosphorylated tau (P-tau) 181, total tau (T-tau), serum neurofilament light chain and glial fibrillary acidic protein (GFAP). Patients with sEOAD exhibited more severe executive function impairment and bilateral precuneus atrophy (P < 0.05, family-wise error corrected) than patients with LOAD. Patients with sEOAD showed elevated CSF and plasma P-tau181 levels (154.0 ± 81.2 pg/mL, P = 0.002; and 6.1 ± 2.3 pg/mL, P = 0.046). Moreover, precuneus atrophy was significantly correlated with serum GFAP levels in sEOAD (P < 0.001). Serum GFAP levels (area under the curve (AUC) = 96.0%, cutoff value = 154.3 pg/mL) displayed excellent diagnostic value in distinguishing sEOAD patients from the control group. These preliminary findings highlight the crucial role of tau protein phosphorylation in the pathogenesis and progression of sEOAD.
Collapse
Affiliation(s)
- Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaozhao Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiong Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Linbin Dai
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chen Du
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230001, China.
| | - Jiong Shi
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|