1
|
Palacios-Pérez M, José MV. A Proposal for the RNAome at the Dawn of the Last Universal Common Ancestor. Genes (Basel) 2024; 15:1195. [PMID: 39336786 PMCID: PMC11431127 DOI: 10.3390/genes15091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Marco V. José
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Castanedo LAM, Matta CF. Prebiotic N-(2-Aminoethyl)-Glycine (AEG)-Assisted Synthesis of Proto-RNA? J Mol Evol 2024:10.1007/s00239-024-10185-w. [PMID: 39052031 DOI: 10.1007/s00239-024-10185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the "water problem" that prohibits the synthesis of nucleotides in water.
Collapse
Affiliation(s)
- Lázaro A M Castanedo
- Department of Chemistry, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada
| | - Chérif F Matta
- Department of Chemistry, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada.
- Département de Chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3, Canada.
| |
Collapse
|
3
|
Palacios-Pérez M, José MV. A Proposal of the Ur-RNAome. Genes (Basel) 2023; 14:2158. [PMID: 38136981 PMCID: PMC10743229 DOI: 10.3390/genes14122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 species (13 bacteria and 13 archaea). We found that the free energy of RNY hairpins was consistently lower than that of their corresponding shuffled controls. We found traces of the three ribosomal RNAs (16S, 23S, and 5S), tRNAs, 6S RNA, and the RNA moieties of RNase P and the signal recognition particle. Nevertheless, at this stage of evolution there was no genetic code (as seen in the absence of the peptidyl transferase centre and any vestiges of the anti-Shine-Dalgarno sequence). Interestingly, we detected the anticodons of both glycine (GCC) and threonine (GGU) in the hairpins of proto-tRNA.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- NoRCEL’s Latin America Hub, 113 Philosophy Hall, University of California, Berkeley, CA 94720, USA
| | - Marco V. José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| |
Collapse
|
4
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eddy I. Jiménez
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Clémentine Gibard
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
5
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021; 60:10775-10783. [PMID: 33325148 DOI: 10.1002/anie.202015910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Recent demonstrations of RNA-DNA chimeras (RDNA) enabling RNA and DNA replication, coupled with prebiotic co-synthesis of deoxyribo- and ribo-nucleotides, have resurrected the hypothesis of co-emergence of RNA and DNA. As further support, we show that diamidophosphate (DAP) with 2-aminoimidazole (amido)phosphorylates and oligomerizes deoxynucleosides to form DNA-under conditions similar to those of ribonucleosides. The pyrimidine deoxynucleoside 5'-O-amidophosphates are formed in good (≈60 %) yields. Intriguingly, the presence of pyrimidine deoxynucleos(t)ides increased the yields of purine deoxynucleotides (≈20 %). Concomitantly, oligomerization (≈18-31 %) is observed with predominantly 3',5'-phosphodiester DNA linkages, and some (<5 %) pyrophosphates. Combined with previous observations of DAP-mediated chemistries and the constructive role of RDNA chimeras, the results reported here help set the stage for systematic investigation of a systems chemistry approach of RNA-DNA coevolution.
Collapse
Affiliation(s)
- Eddy I Jiménez
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Clémentine Gibard
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Abstract
The chemistry of abiotic nucleotide synthesis of RNA and DNA in the context of their prebiotic origins on early earth is a continuing challenge. How did (or how can) the nucleotides form and assemble from the small molecule inventories and under conditions that prevailed on early earth 3.5-4 billion years ago? This review provides a background and up-to-date progress that will allow the reader to judge where the field stands currently and what remains to be achieved. We start with a brief primer on the biological synthesis of nucleotides, followed by an extensive focus on the prebiotic formation of the components of nucleotides-either via the synthesis of ribose and the canonical nucleobases and then joining them together or by building both the conjoined sugar and nucleobase, part-by-part-toward the ultimate goal of forming RNA and DNA by polymerization. The review will emphasize that there are-and will continue to be-many more questions than answers from the synthetic, mechanistic, and analytical perspectives. We wrap up the review with a cautionary note in this context about coming to conclusions as to whether the problem of chemistry of prebiotic nucleotide synthesis has been solved.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ravi Kumar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
The Ribosome as a Missing Link in Prebiotic Evolution III: Over-Representation of tRNA- and rRNA-Like Sequences and Plieofunctionality of Ribosome-Related Molecules Argues for the Evolution of Primitive Genomes from Ribosomal RNA Modules. Int J Mol Sci 2019; 20:ijms20010140. [PMID: 30609737 PMCID: PMC6337102 DOI: 10.3390/ijms20010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
We propose that ribosomal RNA (rRNA) formed the basis of the first cellular genomes, and provide evidence from a review of relevant literature and proteonomic tests. We have proposed previously that the ribosome may represent the vestige of the first self-replicating entity in which rRNAs also functioned as genes that were transcribed into functional messenger RNAs (mRNAs) encoding ribosomal proteins. rRNAs also encoded polymerases to replicate itself and a full complement of the transfer RNAs (tRNAs) required to translate its genes. We explore here a further prediction of our “ribosome-first” theory: the ribosomal genome provided the basis for the first cellular genomes. Modern genomes should therefore contain an unexpectedly large percentage of tRNA- and rRNA-like modules derived from both sense and antisense reading frames, and these should encode non-ribosomal proteins, as well as ribosomal ones with key cell functions. Ribosomal proteins should also have been co-opted by cellular evolution to play extra-ribosomal functions. We review existing literature supporting these predictions. We provide additional, new data demonstrating that rRNA-like sequences occur at significantly higher frequencies than predicted on the basis of mRNA duplications or randomized RNA sequences. These data support our “ribosome-first” theory of cellular evolution.
Collapse
|
8
|
Lepper CP, Williams MAK, Penny D, Edwards PJB, Jameson GB. Effects of Pressure and pH on the Hydrolysis of Cytosine: Implications for Nucleotide Stability around Deep-Sea Black Smokers. Chembiochem 2018; 19:540-544. [PMID: 29205716 DOI: 10.1002/cbic.201700555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/26/2022]
Abstract
The relatively low chemical stability of cytosine compared with other nucleobases is a key concern in origin-of-life scenarios, but the effect of pressure on the rate of hydrolysis of cytosine to uracil remains unknown. Through in situ NMR spectroscopy measurements, it has been determined that the half-life of cytosine at 373.15 K decreases from (18.0±0.7) days at ambient pressure (0.1 MPa) to (8.64±0.18) days at high pressure (200 MPa). This yields an activation volume for hydrolysis of (-11.8±0.5) cm3 mol-1 ; a decrease that is similar to the molar volume of water (18.0 cm3 mol-1 ) and consistent with a tetrahedral 3,3-hydroxyamine transition-state/intermediate species. Similar behaviour was also observed for cytidine. At both ambient and high pressures, the half-life of cytosine decreases significantly as the pH decreases from 7.0 to 6.0. These results provide scant support for the notion that RNA-based life forms originated in high-temperature, high-pressure, acidic environments.
Collapse
Affiliation(s)
- Christopher P Lepper
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Martin A K Williams
- Institute of Fundamental Sciences, The MacDiarmid Institute and the Riddet Institute, Massey University, Palmerston North, Manawatu, 4442, New Zealand
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Geoffrey B Jameson
- Institute of Fundamental Sciences, The MacDiarmid Institute and the Riddet Institute, Massey University, Palmerston North, Manawatu, 4442, New Zealand
| |
Collapse
|
9
|
Scheidler C, Sobotta J, Eisenreich W, Wächtershäuser G, Huber C. Unsaturated C3,5,7,9-Monocarboxylic Acids by Aqueous, One-Pot Carbon Fixation: Possible Relevance for the Origin of Life. Sci Rep 2016; 6:27595. [PMID: 27283227 PMCID: PMC4901337 DOI: 10.1038/srep27595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/20/2016] [Indexed: 11/09/2022] Open
Abstract
All scientific approaches to the origin of life share a common problem: a chemical path to lipids as main constituents of extant cellular enclosures. Here we show by isotope-controlled experiments that unsaturated C3,5,7,9-monocarboxylic acids form by one-pot reaction of acetylene (C2H2) and carbon monoxide (CO) in contact with nickel sulfide (NiS) in hot aqueous medium. The primary products are toto-olefinic monocarboxylic acids with CO-derived COOH groups undergoing subsequent stepwise hydrogenation with CO as reductant. In the resulting unsaturated monocarboxylic acids the double bonds are mainly centrally located with mainly trans-configuration. The reaction conditions are compatible with an origin of life in volcanic-hydrothermal sub-seafloor flow ducts.
Collapse
Affiliation(s)
- Christopher Scheidler
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching Germany
| | - Jessica Sobotta
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching Germany
| | | | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching Germany
| |
Collapse
|
10
|
Yeates JAM, Hilbe C, Zwick M, Nowak MA, Lehman N. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory. Proc Natl Acad Sci U S A 2016; 113:5030-5. [PMID: 27091972 PMCID: PMC4983821 DOI: 10.1073/pnas.1525273113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world.
Collapse
Affiliation(s)
| | - Christian Hilbe
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Martin Zwick
- Systems Science Graduate Program, Portland State University, Portland, OR 97207
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Niles Lehman
- Department of Chemistry, Portland State University, Portland, OR 97207;
| |
Collapse
|
11
|
Crucial steps to life: From chemical reactions to code using agents. Biosystems 2016; 140:49-57. [DOI: 10.1016/j.biosystems.2015.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023]
|
12
|
Ikehara K. Evolutionary Steps in the Emergence of Life Deduced from the Bottom-Up Approach and GADV Hypothesis (Top-Down Approach). Life (Basel) 2016; 6:life6010006. [PMID: 26821048 PMCID: PMC4810237 DOI: 10.3390/life6010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event-the establishment of the first genetic code encoding [GADV]-amino acids-as a juncture for the results obtained from the two approaches.
Collapse
Affiliation(s)
- Kenji Ikehara
- G & L Kyosei Institute, Keihannna Labo-401, Hikaridai 1-7, Seika-cho, Sorakugun, Kyoto 619-0237, Japan.
- International Institute for Advanced Studies of Japan, Kizugawadai 9-3, Kizugawa, Kyoto 619-0225, Japan.
| |
Collapse
|
13
|
The RNA World: 4,000,000,050 years old. Life (Basel) 2015; 5:1583-6. [PMID: 26791312 PMCID: PMC4695837 DOI: 10.3390/life5041583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
|
14
|
Carter CW. What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention. Life (Basel) 2015; 5:294-320. [PMID: 25625599 PMCID: PMC4390853 DOI: 10.3390/life5010294] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
We review arguments that biology emerged from a reciprocal partnership in which small ancestral oligopeptides and oligonucleotides initially both contributed rudimentary information coding and catalytic rate accelerations, and that the superior information-bearing qualities of RNA and the superior catalytic potential of proteins emerged from such complexes only with the gradual invention of the genetic code. A coherent structural basis for that scenario was articulated nearly a decade before the demonstration of catalytic RNA. Parallel hierarchical catalytic repertoires for increasingly highly conserved sequences from the two synthetase classes now increase the likelihood that they arose as translation products from opposite strands of a single gene. Sense/antisense coding affords a new bioinformatic metric for phylogenetic relationships much more distant than can be reconstructed from multiple sequence alignments of a single superfamily. Evidence for distinct coding properties in tRNA acceptor stems and anticodons, and experimental demonstration that the two synthetase family ATP binding sites can indeed be coded by opposite strands of the same gene supplement these biochemical and bioinformatic data, establishing a solid basis for key intermediates on a path from simple, stereochemically coded, reciprocally catalytic peptide/RNA complexes through the earliest peptide catalysts to contemporary aminoacyl-tRNA synthetases. That scenario documents a path to increasing complexity that obviates the need for a single polymer to act both catalytically and as an informational molecule.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
| |
Collapse
|