1
|
Muñoz-Velasco I, Cruz-González A, Hernández-Morales R, Campillo-Balderas JA, Cottom-Salas W, Jácome R, Vázquez-Salazar A. Pioneering role of RNA in the early evolution of life. Genet Mol Biol 2024; 47Suppl 1:e20240028. [PMID: 39437147 PMCID: PMC11445735 DOI: 10.1590/1678-4685-gmb-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 10/25/2024] Open
Abstract
The catalytic, regulatory and structural properties of RNA, combined with their extraordinary ubiquity in cellular processes, are consistent with the proposal that this molecule played a much more conspicuous role in heredity and metabolism during the early stages of biological evolution. This review explores the pivotal role of RNA in the earliest life forms and its relevance in modern biological systems. It examines current models that study the early evolution of life, providing insights into the primordial RNA world and its legacy in contemporary biology.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Celular, Mexico City, Mexico
| | - Adrián Cruz-González
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Ricardo Hernández-Morales
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | | | - Wolfgang Cottom-Salas
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Rodrigo Jácome
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Alberto Vázquez-Salazar
- University of California Los Angeles, Department of Chemical and Biomolecular Engineering, California, USA
| |
Collapse
|
2
|
Agmon I. On the Re-Creation of Protoribosome Analogues in the Lab. Int J Mol Sci 2024; 25:4960. [PMID: 38732179 PMCID: PMC11084786 DOI: 10.3390/ijms25094960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world.
Collapse
Affiliation(s)
- Ilana Agmon
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Agmon I. Three Biopolymers and Origin of Life Scenarios. Life (Basel) 2024; 14:277. [PMID: 38398786 PMCID: PMC10890401 DOI: 10.3390/life14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.
Collapse
Affiliation(s)
- Ilana Agmon
- Institute for Advanced Studies in Theoretical Chemistry, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Chamanian P, Higgs PG. Computer simulations of Template-Directed RNA Synthesis driven by temperature cycling in diverse sequence mixtures. PLoS Comput Biol 2022; 18:e1010458. [PMID: 36001640 PMCID: PMC9447872 DOI: 10.1371/journal.pcbi.1010458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/06/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
We present simulations of non-enzymatic template-directed RNA synthesis that incorporate primer extension, ligation, melting, and reannealing. Strand growth occurs over multiple heating/cooling cycles, producing strands of several hundred nucleotides in length, starting with random oligomers of 4 to 10 nucleotides. A strand typically grows by only 1 or 2 nucleotides in each cycle. Therefore, a strand is copied from many different templates, not from one specific complementary strand. A diverse sequence mixture is produced, and there is no exact copying of sequences, even if single base additions are fully accurate (no mutational errors). It has been proposed that RNA systems may contain a virtual circular genome, in which sequences partially overlap in a way that is mutually catalytic. We show that virtual circles do not emerge naturally in our simulations, and that a system initiated with a virtual circle can only maintain itself if there are no mutational errors and there is no input of new sequences formed by random polymerization. Furthermore, if a virtual sequence and its complement contain repeated short words, new sequences can be produced that were not on the original virtual circle. Therefore the virtual circle sequence cannot maintain itself. Functional sequences with secondary structures contain complementary words on opposite sides of stem regions. Both these words are repeated in the complementary sequence; hence, functional sequences cannot be encoded on a virtual circle. Additionally, we consider sequence replication in populations of protocells. We suppose that functional ribozymes benefit the cell which contains them. Nevertheless, scrambling of sequences occurs, and the functional sequence is not maintained, even when under positive selection. The earliest form of RNA replication may have been non-enzymatic, without requiring polymerase ribozymes. Non-enzymatic replication forms double strands that are unlikely to separate unless melting is driven by temperature cycling. However, re-annealing of existing strands occurs rapidly on cooling, and this prevents subsequent cycles of copying if there are multiple copies of similar sequences. In contrast, if there is a diverse mixture of sequences, partially matching sequences can reanneal in configurations that allow continued strand growth. We show that this allows continued synthesis of populations of random sequences that are quite long. We test the idea that a virtual circular genome could exist in such a mixture. We show that a virtual genome does not arise spontaneously and that it cannot be maintained except in unrealistic ideal cases. We conclude that functional sequence information cannot be encoded on the fragments of a virtual circle.
Collapse
Affiliation(s)
- Pouyan Chamanian
- Origins Institute and Dept of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Paul G. Higgs
- Origins Institute and Dept of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Prosdocimi F, de Farias ST. Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes. Biosystems 2022; 220:104751. [DOI: 10.1016/j.biosystems.2022.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
6
|
Kovalenko SP. On the Origin of Genetically Coded Protein Synthesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Roy S, Sengupta S. Evolution towards increasing complexity through functional diversification in a protocell model of the RNA world. Proc Biol Sci 2021; 288:20212098. [PMID: 34784760 PMCID: PMC8596018 DOI: 10.1098/rspb.2021.2098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
The encapsulation of genetic material inside compartments together with the creation and sustenance of functionally diverse internal components are likely to have been key steps in the formation of 'live', replicating protocells in an RNA world. Several experiments have shown that RNA encapsulated inside lipid vesicles can lead to vesicular growth and division through physical processes alone. Replication of RNA inside such vesicles can produce a large number of RNA strands. Yet, the impact of such replication processes on the emergence of the first ribozymes inside such protocells and on the subsequent evolution of the protocell population remains an open question. In this paper, we present a model for the evolution of protocells with functionally diverse ribozymes. Distinct ribozymes can be created with small probabilities during the error-prone RNA replication process via the rolling circle mechanism. We identify the conditions that can synergistically enhance the number of different ribozymes inside a protocell and allow functionally diverse protocells containing multiple ribozymes to dominate the population. Our work demonstrates the existence of an effective pathway towards increasing complexity of protocells that might have eventually led to the origin of life in an RNA world.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| |
Collapse
|
8
|
DasGupta S, Nykiel K, Piccirilli JA. The hammerhead self-cleaving motif as a precursor to complex endonucleolytic ribozymes. RNA (NEW YORK, N.Y.) 2021; 27:1017-1024. [PMID: 34131025 PMCID: PMC8370743 DOI: 10.1261/rna.078813.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Connections between distinct catalytic RNA motifs through networks of mutations that retain catalytic function (neutral networks) were likely central to the evolution of biocatalysis. Despite suggestions that functional RNAs collectively form an interconnected web of neutral networks, little evidence has emerged to demonstrate the existence of such intersecting networks in naturally occurring RNAs. Here we show that neutral networks of two naturally occurring, seemingly unrelated endonucleolytic ribozymes, the hammerhead (HH) and hairpin (HP), intersect. Sequences at the intersection of these networks exhibit catalytic functions corresponding to both ribozymes by potentially populating both catalytic folds and enable a smooth crossover between the two. Small and structurally simple endonucleolytic motifs like the HH ribozyme could, through mutational walks along their neutral networks, encounter novel catalytic phenotypes, and structurally flexible, bifunctional sequences at the intersection of these networks could have acted as nodes for evolutionary diversification in an RNA world. Considering the simplicity and small size of the HH ribozyme, we propose that this self-cleaving motif could have been a precursor to other more complex endonucleolytic ribozymes. More generally, our results suggest that RNAs that possess distinct sequences, structures, and catalytic functions, can potentially share evolutionary history through mutational connections in sequence space.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kamila Nykiel
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
9
|
Villarreal LP, Witzany G. Social Networking of Quasi-Species Consortia drive Virolution via Persistence. AIMS Microbiol 2021; 7:138-162. [PMID: 34250372 PMCID: PMC8255905 DOI: 10.3934/microbiol.2021010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
Collapse
|
10
|
Chizzolini F, Kent AD, Passalacqua LFM, Lupták A. Enzymatic RNA Production from NTPs Synthesized from Nucleosides and Trimetaphosphate*. Chembiochem 2021; 22:2098-2101. [PMID: 33798271 DOI: 10.1002/cbic.202100085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Indexed: 01/22/2023]
Abstract
A mechanism of nucleoside triphosphorylation would have been critical in an evolving "RNA world" to provide high-energy substrates for reactions such as RNA polymerization. However, synthetic approaches to produce ribonucleoside triphosphates (rNTPs) have suffered from conditions such as high temperatures or high pH that lead to increased RNA degradation, as well as substrate production that cannot sustain replication. Previous reports have demonstrated that cyclic trimetaphosphate (cTmp) can react with nucleosides to form rNTPs under prebiotically-relevant conditions, but their reaction rates were unknown and the influence of reaction conditions not well-characterized. Here we established a sensitive assay that allowed for the determination of second-order rate constants for all four rNTPs, ranging from 1.7×10-6 to 6.5×10-6 M-1 s-1 . The ATP reaction shows a linear dependence on pH and Mg2+ , and an enthalpy of activation of 88±4 kJ/mol. At millimolar nucleoside and cTmp concentrations, the rNTP production rate is sufficient to facilitate RNA synthesis by both T7 RNA polymerase and a polymerase ribozyme. We suggest that the optimized reaction of cTmp with nucleosides may provide a viable connection between prebiotic nucleotide synthesis and RNA replication.
Collapse
Affiliation(s)
- Fabio Chizzolini
- Department of Pharmaceutical Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Alexandra D Kent
- Department of Chemistry, University of California at Irvine, Irvine, CA, 92617, USA
| | - Luiz F M Passalacqua
- Department of Pharmaceutical Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California at Irvine, Irvine, CA, 92617, USA.,Department of Chemistry, University of California at Irvine, Irvine, CA, 92617, USA.,Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA, 92617, USA
| |
Collapse
|
11
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
12
|
Scheitl CPM, Lange S, Höbartner C. New Deoxyribozymes for the Native Ligation of RNA. Molecules 2020; 25:molecules25163650. [PMID: 32796587 PMCID: PMC7465978 DOI: 10.3390/molecules25163650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Deoxyribozymes (DNAzymes) are small, synthetic, single-stranded DNAs capable of catalyzing chemical reactions, including RNA ligation. Herein, we report a novel class of RNA ligase deoxyribozymes that utilize 5'-adenylated RNA (5'-AppRNA) as the donor substrate, mimicking the activated intermediates of protein-catalyzed RNA ligation. Four new DNAzymes were identified by in vitro selection from an N40 random DNA library and were shown to catalyze the intermolecular linear RNA-RNA ligation via the formation of a native 3'-5'-phosphodiester linkage. The catalytic activity is distinct from previously described RNA-ligating deoxyribozymes. Kinetic analyses revealed the optimal incubation conditions for high ligation yields and demonstrated a broad RNA substrate scope. Together with the smooth synthetic accessibility of 5'-adenylated RNAs, the new DNA enzymes are promising tools for the protein-free synthesis of long RNAs, for example containing precious modified nucleotides or fluorescent labels for biochemical and biophysical investigations.
Collapse
Affiliation(s)
- Carolin P. M. Scheitl
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Sandra Lange
- Agricultural Center, BASF SE, Speyerer Str 2, 67117 Limburgerhof, Germany;
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
- Correspondence:
| |
Collapse
|
13
|
Kiyooka R, Akagi J, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures. J Biosci Bioeng 2020; 130:253-259. [PMID: 32451246 DOI: 10.1016/j.jbiosc.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Ribozymes with modular structures are attractive platforms for the construction of nanoscale RNA objects with biological functions. We designed group I ribozyme dimers as unit ribozyme dimers (Urds), which self-assembled to form their polymeric states and also oligomeric states with defined numbers of Urds. Assembly of Urds yielded catalytic ability of a pair of distinct ribozyme units to cleave two distinct substrates. The morphologies of the assembled ribozyme structures were observed directly by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Ryuji Kiyooka
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Junya Akagi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
14
|
Rahman MM, Matsumura S, Ikawa Y. Effects of molecular crowding on a bimolecular group I ribozyme and its derivative that self-assembles to form ribozyme oligomers. Biochem Biophys Res Commun 2018; 507:136-141. [DOI: 10.1016/j.bbrc.2018.10.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023]
|
15
|
Attwater J, Raguram A, Morgunov AS, Gianni E, Holliger P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 2018; 7:35255. [PMID: 29759114 PMCID: PMC6003772 DOI: 10.7554/elife.35255] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox, we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit ‘+’ and ‘–’ strands in segments and assemble them into a new active ribozyme. Life as we know it relies on three types of molecules: DNA, which stores genetic information; proteins that carry out the chemical reactions necessary for life; and RNA, which relays information between the two. However, some scientists think that before life adopted DNA and proteins, it relied primarily on RNA. Like DNA, strands of RNA contain genetic data. Yet, some RNA strands can also fold to form ribozymes, 3D structures that could have guided life’s chemical processes the way proteins do now. For early life to be built on RNA, though, this molecule must have had the ability to make copies of itself. This duplication is a chemical reaction that could be driven by an ‘RNA replicase’ ribozyme. RNA strands are made of four different letters attached to each other in a specific order. When RNA is copied, one strand acts as a template, and a replicase ribozyme would accurately guide which letters are added to the strand under construction. However, no replicase ribozyme has been observed in existing life forms; this has led scientists to try to artificially create RNA replicase ribozymes that could copy themselves. Until now, the best approaches have assumed that a replicase would add building blocks formed of a single letter one by one to grow a new strand. Yet, although ribozymes can be made to copy straight RNA templates this way, folded RNA templates – including the replicase ribozyme itself – impede copying. In this apparent paradox, a ribozyme needs to fold to copy RNA, but when folded, is itself copied poorly. Here, Attwater et al. wondered if choosing different building blocks might overcome this contradiction. Biochemical techniques were used to engineer a ribozyme that copies RNA strands by adding letters not one-by-one, but three-by-three. Using three-letter ‘triplet’ building blocks, this new ribozyme can copy various folded RNA strands, including the active part of its own sequence. This is because triplet building blocks have different, and sometimes unexpected, chemical properties compared to single-letter blocks. For example, these triplets work together to bind tightly to RNA strands and unravel structures that block RNA copying. All life on Earth today uses a triplet RNA code to make proteins from DNA, and these experiments showed how RNA triplets might have helped RNA sustain early life forms. Further work is now needed to improve the ribozyme designed by Attwater et al. for efficient self-copying.
Collapse
Affiliation(s)
- James Attwater
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aditya Raguram
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexey S Morgunov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Edoardo Gianni
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
16
|
Akoopie A, Müller UF. Lower temperature optimum of a smaller, fragmented triphosphorylation ribozyme. Phys Chem Chem Phys 2018; 18:20118-25. [PMID: 27053323 DOI: 10.1039/c6cp00672h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The RNA world hypothesis describes a stage in the early evolution of life in which catalytic RNAs mediated the replication of RNA world organisms. One challenge to this hypothesis is that most existing ribozymes are much longer than what may be expected to originate from prebiotically plausible methods, or from the polymerization by currently existing polymerase ribozymes. We previously developed a 96-nucleotide long ribozyme, which generates a chemically activated 5'-phosphate (a 5'-triphosphate) from a prebiotically plausible molecule, trimetaphosphate, and an RNA 5'-hydroxyl group. Analogous ribozymes may have been important in the RNA world to access an energy source for the earliest life forms. Here we reduce the length of this ribozyme by fragmenting the ribozyme into multiple RNA strands, and by successively removing its longest double strand. The resulting ribozyme is composed of RNA fragments with none longer than 34 nucleotides. The temperature optimum was ∼20 °C, compared to ∼40 °C for the parent ribozyme. This shift in temperature dependence may be a more general phenomenon for fragmented ribozymes, and may have helped RNA world organisms to emerge at low temperature.
Collapse
Affiliation(s)
- Arvin Akoopie
- Department of Chemistry & Biochemistry, University of California, San Diego, USA.
| | - Ulrich F Müller
- Department of Chemistry & Biochemistry, University of California, San Diego, USA.
| |
Collapse
|
17
|
Cojocaru R, Unrau PJ. Transitioning to DNA genomes in an RNA world. eLife 2017; 6. [PMID: 29091027 PMCID: PMC5665642 DOI: 10.7554/elife.32330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022] Open
Abstract
The unexpected ability of an RNA polymerase ribozyme to copy RNA into DNA has ramifications for understanding how DNA genomes evolved.
Collapse
Affiliation(s)
- Razvan Cojocaru
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
18
|
Staroseletz Y, Nechaev S, Bichenkova E, Bryce RA, Watson C, Vlassov V, Zenkova M. Non-enzymatic recombination of RNA: Ligation in loops. Biochim Biophys Acta Gen Subj 2017; 1862:705-725. [PMID: 29097301 DOI: 10.1016/j.bbagen.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND While the RNA world hypothesis is widely accepted, it is still far from complete: the existence of self-replicating ribozyme, consisting of potentially hundreds of nucleotides, is a core assumption for the majority of RNA world models. The appearance of such long RNA molecules under prebiotic conditions is not self-evident. Recombination seems to be a plausible way of creating RNA diversity, resulting in the appearance of functional RNAs, capable of self-replicating. METHODS We report here on the study of recombination process modelled with two 96 nts RNA fragments. Detection of recombination products was performed with RT-PCR followed by TA-cloning and Sanger sequencing. RESULTS A wide range of recombinant products was detected. We found that (i) the most efficient ligation was observed for RNA species forming bulges or internal loops, with ligation partners located within the loop; (ii) a strong preference was observed for formation of a few types of major products with a large variety of minor products; (iii) ligation could occur with participation of either 2',3'-cyclophosphate or 5'-ppp; (iv) the presence of key reaction components, i.e. 5'ppp-RNAs, enabled the formation of additional types of product; (v) molecular dynamics simulations of one of the most abundant products suggests that the ligation results in a preferable formation of 2'-5'- rather than 3'-5'-linkages. CONCLUSIONS The study demonstrates regularities of new RNA molecules formation with non-enzymatic recombination process. GENERAL SIGNIFICANCE Our findings provide new data supporting the RNA World hypothesis and show the way of new RNA sequences emergence under prebiotic conditions.
Collapse
Affiliation(s)
- Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey Nechaev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Elena Bichenkova
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Catherine Watson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
19
|
Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Life (Basel) 2016; 6:life6040040. [PMID: 27827919 PMCID: PMC5198075 DOI: 10.3390/life6040040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks.
Collapse
|
20
|
Müller S, Appel B, Balke D, Hieronymus R, Nübel C. Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today? F1000Res 2016; 5. [PMID: 27408700 PMCID: PMC4926735 DOI: 10.12688/f1000research.8601.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/28/2022] Open
Abstract
Since the discovery of the first catalytic RNA in 1981, the field of ribozyme research has developed from the discovery of catalytic RNA motifs in nature and the elucidation of their structures and catalytic mechanisms, into a field of engineering and design towards application in diagnostics, molecular biology and medicine. Owing to the development of powerful protocols for selection of nucleic acid catalysts with a desired functionality from random libraries, the spectrum of nucleic acid supported reactions has greatly enlarged, and importantly, ribozymes have been accompanied by DNAzymes. Current areas of research are the engineering of allosteric ribozymes for artificial regulation of gene expression, the design of ribozymes and DNAzymes for medicinal and environmental diagnostics, and the demonstration of RNA world relevant ribozyme activities. In addition, new catalytic motifs or novel genomic locations of known motifs continue to be discovered in all branches of life by the help of high-throughput bioinformatic approaches. Understanding the biological role of the catalytic RNA motifs widely distributed in diverse genetic contexts belongs to the big challenges of future RNA research.
Collapse
Affiliation(s)
- Sabine Müller
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Bettina Appel
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Darko Balke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Robert Hieronymus
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Claudia Nübel
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Colizzi ES, Hogeweg P. Parasites Sustain and Enhance RNA-Like Replicators through Spatial Self-Organisation. PLoS Comput Biol 2016; 12:e1004902. [PMID: 27120344 PMCID: PMC4847872 DOI: 10.1371/journal.pcbi.1004902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
In a prebiotic RNA world, parasitic behaviour may be favoured because template dependent replication happens in trans, thus being altruistic. Spatially extended systems are known to reduce harmful effects of parasites. Here we present a spatial system to show that evolution of replication is (indirectly) enhanced by strong parasites, and we characterise the phase transition that leads to this mode of evolution. Building on the insights of this analysis, we identify two scenarios, namely periodic disruptions and longer replication time-span, in which speciation occurs and an evolved parasite-like lineage enables the evolutionary increase of replication rates in replicators. Finally, we show that parasites co-evolving with replicators are selected to become weaker, i.e. worse templates for replication when the duration of replication is increased. We conclude that parasites may not be considered a problem for evolution in a prebiotic system, but a degree of freedom that can be exploited by evolution to enhance the evolvability of replicators, by means of emergent levels of selection. The RNA world is a stage of evolution that preceded cellular life. In this world, RNA molecules would both replicate other RNAs and behave as templates for replication. A known evolutionary problem of this world is that selection should favour parasitic templates that do not replicate others, because they would be replicated the most. A possible solution to this problem comes from spatial self-organisation: local accumulation of parasites lead to their own local extinction, which leaves empty space for replicators to invade. We show that the spatial organisation generated by interacting replicators and parasites sets the (spatial) conditions that enhance replicase activity when parasites are stronger. Moreover, we find that the co-evolution of replicators and parasites is severely constrained by the type of spatial patterns they form, and we explore this feedback between evolution and self-organisation. We conclude that spatial self-organisation may have played a prominent role in prebiotic evolution.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Pobanz K, Lupták A. Improving the odds: Influence of starting pools on in vitro selection outcomes. Methods 2016; 106:14-20. [PMID: 27109058 DOI: 10.1016/j.ymeth.2016.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
As with any outcome of an evolutionary process, the success of in vitro selection experiments depends critically on the starting population. In vitro selections isolate functional nucleic acids that fold into specific structures and form unique binding and catalytic sites. The selection outcomes therefore depend on the molecular and structural diversity of the initial pools. In addition, the experiments are strongly influenced by the length of the starting pool. Longer randomized regions support the formation of more complex structures and presumably allow formation of more intricate tertiary interactions, but they also tend to misfold and aggregate, whereas shorter pools are sufficient to yield simpler motifs. Furthermore, introducing a sequence bias that promotes secondary structure formation appears to prejudice the population towards more functional macromolecules. We review the literature on the influence of the starting pools on the predicted and actual outcomes of laboratory evolution experiments.
Collapse
Affiliation(s)
- Kelsey Pobanz
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Andrej Lupták
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
23
|
Adamala KP, Engelhart AE, Szostak JW. Collaboration between primitive cell membranes and soluble catalysts. Nat Commun 2016; 7:11041. [PMID: 26996603 PMCID: PMC4802160 DOI: 10.1038/ncomms11041] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/15/2016] [Indexed: 12/23/2022] Open
Abstract
One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg2+ environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells. Early cells likely consisted of fatty acid vesicles enclosing magnesium-dependent ribozymes. Here, the authors show that fatty acid derivatives can form vesicles that, unlike those formed from only unmodified fatty acids, are stable in the presence of magnesium and could support ribozyme catalysis.
Collapse
Affiliation(s)
- Katarzyna P Adamala
- Howard Hughes Medical Institute and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - Aaron E Engelhart
- Howard Hughes Medical Institute and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
24
|
Crucial steps to life: From chemical reactions to code using agents. Biosystems 2016; 140:49-57. [DOI: 10.1016/j.biosystems.2015.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023]
|
25
|
Dolan GF, Akoopie A, Müller UF. A Faster Triphosphorylation Ribozyme. PLoS One 2015; 10:e0142559. [PMID: 26545116 PMCID: PMC4636267 DOI: 10.1371/journal.pone.0142559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/24/2015] [Indexed: 12/02/2022] Open
Abstract
In support of the RNA world hypothesis, previous studies identified trimetaphosphate (Tmp) as a plausible energy source for RNA world organisms. In one of these studies, catalytic RNAs (ribozymes) that catalyze the triphosphorylation of RNA 5'-hydroxyl groups using Tmp were obtained by in vitro selection. One ribozyme (TPR1) was analyzed in more detail. TPR1 catalyzes the triphosphorylation reaction to a rate of 0.013 min-1 under selection conditions (50 mM Tmp, 100 mM MgCl2, 22°C). To identify a triphosphorylation ribozyme that catalyzes faster triphosphorylation, and possibly learn about its secondary structure TPR1 was subjected to a doped selection. The resulting ribozyme, TPR1e, contains seven mutations relative to TPR1, displays a previously unidentified duplex that constrains the ribozyme's structure, and reacts at a 24-fold faster rate than the parent ribozyme. Under optimal conditions (150 mM Tmp, 650 mM MgCl2, 40°C), the triphosphorylation rate of TRP1e reaches 6.8 min-1.
Collapse
Affiliation(s)
- Gregory F. Dolan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Arvin Akoopie
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
The RNA World: 4,000,000,050 years old. Life (Basel) 2015; 5:1583-6. [PMID: 26791312 PMCID: PMC4695837 DOI: 10.3390/life5041583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
|