1
|
Kuruma Y, Nomaki H, Isobe N, Matsuoka D, Shimane Y. The Potential of Artificial Cells Functioning under In Situ Deep-Sea Conditions. ACS Synth Biol 2024; 13:3144-3149. [PMID: 39353593 PMCID: PMC11494692 DOI: 10.1021/acssynbio.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Artificial cells with reconstructed cellular functions could serve as practical protocell models for studying the early cellular life on the Earth. Investigating the viability of protocell models in extreme environments where life may have arisen is important for advancing origin-of-life research. Here, we tested the survivability of lipid membrane vesicles in deep-sea environments. The vesicles were submerged in the deep-sea floor with a human-occupied vehicle. Although most of the vesicles were broken, some vesicles maintained a spherical shape after the dives. When a cell-free protein synthesis system was encapsulated inside, a few vesicles remained even after a 1,390 m depth dive. Interestingly, such artificial cells could subsequently synthesize protein in a nutrient-rich buffer solution. Together with on shore experiments showing artificial cells synthesized protein under high pressure, our results suggest artificial cells may be able to express genes in deep-sea environments where thermal energy is available from hydrothermal vents.
Collapse
Affiliation(s)
- Yutetsu Kuruma
- Institute
for Extra-cutting-edge Science and Technology Avant-garde Research
(X-star), Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Hidetaka Nomaki
- Institute
for Extra-cutting-edge Science and Technology Avant-garde Research
(X-star), Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Noriyuki Isobe
- Biogeochemistry
Research Center, Research Institute for Marine Resources Utilization
(MRU), Japan Agency for Marine-Earth Science
and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Daisuke Matsuoka
- Center
for Earth Information Science and Technology (CEIST), Research Institute for Value-Added-Information Generation (VAiG),
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 Japan
| | - Yasuhiro Shimane
- Institute
for Extra-cutting-edge Science and Technology Avant-garde Research
(X-star), Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
2
|
Albanese P, Mavelli F, Altamura E. Light energy transduction in liposome-based artificial cells. Front Bioeng Biotechnol 2023; 11:1161730. [PMID: 37064236 PMCID: PMC10091278 DOI: 10.3389/fbioe.2023.1161730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
In this work we review the latest strategies for the bottom-up assembly of energetically autonomous artificial cells capable of transducing light energy into chemical energy and support internalized metabolic pathways. Such entities are built by taking inspiration from the photosynthetic machineries found in nature which are purified and reconstituted directly in the membrane of artificial compartments or encapsulated in form of organelle-like structures. Specifically, we report and discuss recent examples based on liposome-technology and multi-compartment (nested) architectures pointing out the importance of this matter for the artificial cell synthesis research field and some limitations and perspectives of the bottom-up approach.
Collapse
Affiliation(s)
- Paola Albanese
- Department of Earth, Environmental and Physical Sciences, University of Siena, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | - Fabio Mavelli
- Department of Chemistry, University of Bari, Bari, Italy
- *Correspondence: Fabio Mavelli, ; Emiliano Altamura,
| | - Emiliano Altamura
- Department of Chemistry, University of Bari, Bari, Italy
- *Correspondence: Fabio Mavelli, ; Emiliano Altamura,
| |
Collapse
|
3
|
Abstract
According to the current scientific paradigm, what we call ‘life’, ‘mind’, and ‘consciousness’ are considered epiphenomenal occurrences, or emergent properties or functions of matter and energy. Science does not associate these with an inherent and distinct existence beyond a materialistic/energetic conception. ‘Life’ is a word pointing at cellular and multicellular processes forming organisms capable of specific functions and skills. ‘Mind’ is a cognitive ability emerging from a matrix of complex interactions of neuronal processes, while ‘consciousness’ is an even more elusive concept, deemed a subjective epiphenomenon of brain activity. Historically, however, this has not always been the case, even in the scientific and academic context. Several prominent figures took vitalism seriously, while some schools of Western philosophical idealism and Eastern traditions promoted conceptions in which reality is reducible to mind or consciousness rather than matter. We will argue that current biological sciences did not falsify these alternative paradigms and that some forms of vitalism could be linked to some forms of idealism if we posit life and cognition as two distinct aspects of consciousness preeminent over matter. However, we will not argue in favor of vitalistic and idealistic conceptions. Rather, contrary to a physicalist doctrine, these were and remain coherent worldviews and cannot be ruled out by modern science.
Collapse
|
4
|
Holló G, Miele Y, Rossi F, Lagzi I. Shape changes and budding of giant vesicles induced by an internal chemical trigger: an interplay between osmosis and pH change. Phys Chem Chem Phys 2021; 23:4262-4270. [PMID: 33587060 DOI: 10.1039/d0cp05952h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape transformation and budding of phospholipid/fatty acid giant hybrid vesicles can be induced by an internal chemical stimulus (pH change) when coupled with an osmotic shock. In particular, an autocatalytic enzymatic reaction set (urea-urease system), confined in the lumen of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/oleic acid (HOA) vesicles, can force the budding of the hosting vesicle, when properly fed by a trans-membrane substrate infusion. Herein, we elucidate the budding mechanism by simulating the shape changes of a vesicle during the enzymatic reaction. The area-difference-elasticity (ADE) theory is thus implemented to minimize the surface elastic energy and obtain the equilibrium shape at different values of the reduced volume and different values of the reduced preferred area difference (Δa0). Simulations, together with control experiments, unambiguously show that to obtain an effective vesicle shape transformation, the osmotic stress and the pH change in the lumen of the vesicle must act in synergy at the same timescale. Osmotic pressure induces a vesicle deflation (volume loss), while the pH change affects the preferred area difference between the outer and the inner membrane leaflets.
Collapse
Affiliation(s)
- Gábor Holló
- MTA-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics 1111, Budafoki ut 8, Budapest, Hungary
| | - Ylenia Miele
- Department of Chemistry and Biology "A. Zambelli"University of Salerno, Via Giovanni Paolo II 132, 84084 - Fisciano (SA), Italy
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences - DEEP Sciences, University of Siena, Pian dei Mantellini 44, 53100 - Siena, Italy.
| | - István Lagzi
- Department of Physics, Budapest University of Technology and Economics 1111, Budafoki út 8, Budapest, Hungary.
| |
Collapse
|
5
|
Altenburg WJ, Yewdall NA, Vervoort DFM, van Stevendaal MHME, Mason AF, van Hest JCM. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells. Nat Commun 2020; 11:6282. [PMID: 33293610 PMCID: PMC7722712 DOI: 10.1038/s41467-020-20124-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The cell cytosol is crowded with high concentrations of many different biomacromolecules, which is difficult to mimic in bottom-up synthetic cell research and limits the functionality of existing protocellular platforms. There is thus a clear need for a general, biocompatible, and accessible tool to more accurately emulate this environment. Herein, we describe the development of a discrete, membrane-bound coacervate-based protocellular platform that utilizes the well-known binding motif between Ni2+-nitrilotriacetic acid and His-tagged proteins to exercise a high level of control over the loading of biologically relevant macromolecules. This platform can accrete proteins in a controlled, efficient, and benign manner, culminating in the enhancement of an encapsulated two-enzyme cascade and protease-mediated cargo secretion, highlighting the potency of this methodology. This versatile approach for programmed spatial organization of biologically relevant proteins expands the protocellular toolbox, and paves the way for the development of the next generation of complex yet well-regulated synthetic cells.
Collapse
Affiliation(s)
- Wiggert J Altenburg
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - N Amy Yewdall
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Daan F M Vervoort
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Marleen H M E van Stevendaal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
6
|
Abstract
Although prebiotic condensations of glycerol, phosphate and fatty acids produce phospholipid esters with a racemic backbone, most experimental studies on vesicles intended as protocell models have been carried out by employing commercial enantiopure phospholipids. Current experimental research on realistic protocell models urgently requires racemic phospholipids and efficient synthetic routes for their production. Here we propose three synthetic pathways starting from glycerol or from racemic solketal (α,β-isopropylidene-dl-glycerol) for the gram-scale production (up to 4 g) of racemic phospholipid ester precursors. We describe and compare these synthetic pathways with literature data. Racemic phosphatidylcholines and phosphatidylethanolamines were obtained in good yields and high purity from 1,2-diacylglycerols. Racemic POPC (rac-POPC, (R,S)-1-palmitoyl-2-oleoyl-3-phosphocholine), was used as a model compound for the preparation of giant vesicles (GVs). Confocal laser scanning fluorescence microscopy was used to compare GVs prepared from enantiopure (R)-POPC), racemic POPC (rac-POPC) and a scalemic mixture (scal-POPC) of (R)-POPC enriched with rac-POPC. Vesicle morphology and size distribution were similar among the different (R)-POPC, rac-POPC and scal-POPC, while calcein entrapments in (R)-POPC and in scal-POPC were significantly distinct by about 10%.
Collapse
|
7
|
Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. DATA 2020. [DOI: 10.3390/data5020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this theoretical work, we analyse the kinetics of charge recombination reaction after a light excitation of the Reaction Centres extracted from the photosynthetic bacterium Rhodobacter sphaeroides and reconstituted in small unilamellar phospholipid vesicles. Due to the compartmentalized nature of liposomes, vesicles may exhibit a random distribution of both ubiquinone molecules and the Reaction Centre protein complexes that can produce significant differences on the local concentrations from the average expected values. Moreover, since the amount of reacting species is very low in compartmentalized lipid systems the stochastic approach is more suitable to unveil deviations of the average time behaviour of vesicles from the deterministic time evolution.
Collapse
|
8
|
Ghéczy N, Sasaki K, Yoshimoto M, Pour-Esmaeil S, Kröger M, Stano P, Walde P. A two-enzyme cascade reaction consisting of two reaction pathways. Studies in bulk solution for understanding the performance of a flow-through device with immobilised enzymes. RSC Adv 2020; 10:18655-18676. [PMID: 35518281 PMCID: PMC9053938 DOI: 10.1039/d0ra01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Enzyme-catalysed cascade reactions in flow-through systems with immobilised enzymes currently are of great interest for exploring their potential for biosynthetic and bioanalytical applications. Basic studies in this field often aim at understanding the stability of the immobilised enzymes and their catalytic performance, for example, in terms of yield of a desired reaction product, analyte detection limit, enzyme stability or reaction reproducibility. In the work presented, a cascade reaction involving the two enzymes bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) – with hydrogen peroxide (H2O2) as HRP “activator” – was first investigated in great detail in bulk solution at pH = 7.2. The reaction studied is the hydrolysis and oxidation of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) to 2′,7′-dichlorofluorescein (DCF), which was found to proceed along two reaction pathways. This two-enzyme cascade reaction was then applied for analysing the performance of BCA and HRP immobilised in glass fiber filters which were placed inside a filter holder device through which a DCFH2-DA/H2O2 substrate solution was pumped. Comparison was made between (i) co-immobilised and (ii) sequentially immobilised enzymes (BCA first, HRP second). Significant differences for the two arrangements in terms of measured product yield (DCF) could be explained based on quantitative UV/vis absorption measurements carried out in bulk solution. We found that the lower DCF yield observed for sequentially immobilised enzymes originates from a change in one of the two possible reaction pathways due to enzyme separation, which was not the case for enzymes that were co-immobilised (or simultaneously present in the bulk solution experiments). The higher DCF yield observed for co-immobilised enzymes did not originate from a molecular proximity effect (no increased oxidation compared to sequential immobilisation). A cascade reaction catalysed by bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) proceeds over two possible pathways, which explains differences in product formation for differently immobilised enzymes in flow-through reactions.![]()
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Kai Sasaki
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Makoto Yoshimoto
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland .,Department of Applied Chemistry, Yamaguchi University Tokiwadai 2-16-1 Ube 755-8611 Japan
| | - Sajad Pour-Esmaeil
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich Leopold-Ruzicka-Weg 4 CH-8093 Zürich Switzerland
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento Ecotekne 73100 Lecce Italy
| | - Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| |
Collapse
|
9
|
Possible Roles of Amphiphilic Molecules in the Origin of Biological Homochirality. Symmetry (Basel) 2019. [DOI: 10.3390/sym11080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A review. The question of homochirality is an intriguing problem in the field of chemistry, and is deeply related to the origin of life. Though amphiphiles and their supramolecular assembly have attracted less attention compared to biomacromolecules such as RNA and proteins, the lipid world hypothesis sheds new light on the origin of life. This review describes how amphiphilic molecules are possibly involved in the scenario of homochirality. Some prebiotic conditions relevant to amphiphilic molecules will also be described. It could be said that the chiral properties of amphiphilic molecules have various interesting features such as compositional information, spontaneous formation, the ability to exchange components, fission and fusion, adsorption, and permeation. This review aims to clarify the roles of amphiphiles regarding homochirality, and to determine what kinds of physical properties of amphiphilic molecules could have played a role in the scenario of homochirality.
Collapse
|
10
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|
11
|
Fanti A, Gammuto L, Mavelli F, Stano P, Marangoni R. Do protocells preferentially retain macromolecular solutes upon division/fragmentation? A study based on the extrusion of POPC giant vesicles. Integr Biol (Camb) 2019; 10:6-17. [PMID: 29230464 DOI: 10.1039/c7ib00138j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A key process of protocell behaviour is their recursive growth and division. In order to be sustainable, the latter must be characterized by an even and homogeneous partition of the solute molecules initially present in the parent protocell among the daughter ones. Here we have investigated, by means of an artificial division model (extrusion of giant lipid vesicles) and confocal microscopy, the fate of solutes when a large vesicle fragments into many smaller vesicles. Solutes of low- and high-molecular weight such as pyranine, calcein, albumin-FITC, dextran-FITC and carbonic anhydrase have been employed. Although the vesicle extrusion brings about a release of their inner content in the environment, the results shown in this initial report indicate that macromolecules can be partially retained when compared with low-molecular weight ones. Results are discussed from the viewpoint of the life cycle of primitive cells. In particular, the findings suggest that a similar mechanism operating during the critical step of vesicle growth-division could have contributed to primitive evolution.
Collapse
Affiliation(s)
- Alessio Fanti
- Biology Department, University of Pisa, Via Derna 1, I-56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
12
|
Altamura E, Carrara P, D'Angelo F, Mavelli F, Stano P. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: a review. Synth Biol (Oxf) 2018; 3:ysy011. [PMID: 32995519 PMCID: PMC7445889 DOI: 10.1093/synbio/ysy011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulation of transcription-translation (TX-TL) machinery inside lipid vesicles and water-in-oil droplets leads to the construction of cytomimetic systems (often called 'synthetic cells') for synthetic biology and origins-of-life research. A number of recent reports have shown that protein synthesis inside these microcompartments is highly diverse in terms of rate and amount of synthesized protein. Here, we discuss the role of extrinsic stochastic effects (i.e. solute partition phenomena) as relevant factors contributing to this pattern. We evidence and discuss cases where between-compartment diversity seems to exceed the expected theoretical values. The need of accurate determination of solute content inside individual vesicles or droplets is emphasized, aiming at validating or rejecting the predictions calculated from the standard fluctuations theory. At the same time, we promote the integration of experiments and stochastic modeling to reveal the details of solute encapsulation and intra-compartment reactions.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Paolo Carrara
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Francesca D'Angelo
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Fabio Mavelli
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, I-73100, Lecce, Italy
| |
Collapse
|
13
|
Benítez-Mateos AI, Nidetzky B, Bolivar JM, López-Gallego F. Single-Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201701590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
- IKERBASQUE; Basque Foundation for Science; Bilbao Spain
| |
Collapse
|
14
|
Qiao H, Hu N, Bai J, Ren L, Liu Q, Fang L, Wang Z. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form. ORIGINS LIFE EVOL B 2017; 47:499-510. [PMID: 27807660 DOI: 10.1007/s11084-016-9527-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Abstract
Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.
Collapse
Affiliation(s)
- Hai Qiao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Na Hu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Jin Bai
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Lili Ren
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
15
|
Mora NL, Gao Y, Gutierrez MG, Peruzzi J, Bakker I, Peters RJRW, Siewert B, Bonnet S, Kieltyka RE, van Hest JCM, Malmstadt N, Kros A. Evaluation of dextran(ethylene glycol) hydrogel films for giant unilamellar lipid vesicle production and their application for the encapsulation of polymersomes. SOFT MATTER 2017; 13:5580-5588. [PMID: 28730206 PMCID: PMC5586486 DOI: 10.1039/c7sm00551b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Giant Unilamellar Vesicles (GUVs) prepared from phospholipids are becoming popular membrane model systems for use in biophysical studies. The quality, size and yield of GUVs depend on the preparation method used to obtain them. In this study, hydrogels consisting of dextran polymers crosslinked by poly(ethylene glycol) (DexPEG) were used as hydrophilic frameworks for the preparation of vesicle suspensions under physiological ionic strength conditions. A comparative study was conducted using hydrogels with varied physicochemical properties to evaluate their performance for GUV production. The prepared GUVs were quantified by flow cytometry using the Coulter Principle to determine the yield and size distribution. We find that hydrogels of lower mechanical strength, increased swellability and decreased lipid interaction favour GUV production, while their resulting size is determined by the surface roughness of the hydrogel film. Moreover, we embedded polymersomes into the crosslinked hydrogel network, creating a DexPEG - polymersome hybrid film. The re-hydration of lipids on those hybrid substrates led to the production of GUVs and the efficient encapsulation of polymersomes in the lumen of GUVs.
Collapse
Affiliation(s)
- Nestor Lopez Mora
- Leiden Institute of Chemistry, Leiden University, Supramolecular & Biomaterials Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Yue Gao
- Leiden Institute of Chemistry, Leiden University, Supramolecular & Biomaterials Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - M Gertrude Gutierrez
- Departments of Chemical Engineering & Materials Science, Biomedical Engineering, and Chemistry, University of Southern California, 925 Bloom Walk, 90089, Los Angeles, CA, USA
| | - Justin Peruzzi
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, 400741, Charlottesville, VA, USA
| | - Ivan Bakker
- Leiden Institute of Chemistry, Leiden University, Supramolecular & Biomaterials Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Ruud J R W Peters
- Radboud University Nijmegen, Department of Organic Chemistry, Heyendaalseweg 135 6525 AJ, Nijmegen, The Netherlands
| | - Bianka Siewert
- Leiden Institute of Chemistry, Leiden University, Metals in Catalysis, Biomimetics & Inorganic Materials, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Metals in Catalysis, Biomimetics & Inorganic Materials, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Roxanne E Kieltyka
- Leiden Institute of Chemistry, Leiden University, Supramolecular & Biomaterials Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Jan C M van Hest
- Radboud University Nijmegen, Department of Organic Chemistry, Heyendaalseweg 135 6525 AJ, Nijmegen, The Netherlands
| | - Noah Malmstadt
- Departments of Chemical Engineering & Materials Science, Biomedical Engineering, and Chemistry, University of Southern California, 925 Bloom Walk, 90089, Los Angeles, CA, USA
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Supramolecular & Biomaterials Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
16
|
Maeshima K, Yoshimoto M. Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles. Enzyme Microb Technol 2017; 105:9-17. [PMID: 28756864 DOI: 10.1016/j.enzmictec.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 11/27/2022]
Abstract
The biomimetic approach using immobilized enzymes is useful for the synthesis of structurally defined inorganic materials. In this work, carbonic anhydrase (CA) from bovine erythrocytes was covalently conjugated at 25°C to the liposomes composed of 15mol% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (NG-POPE), and the zwitterionic and anionic phospholipids with the same acyl chains as NG-POPE. For the conjugation, the carboxyl groups of liposomal NG-POPE were activated with 11mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 4.6mM N-hydroxysulfosuccinimide (sulfo-NHS). The carbonic anhydrase-conjugated liposomes (CALs) with the mean hydrodynamic diameter of 149nm showed the esterase activity corresponding to on average 5.5×102 free CA molecules per liposome. On the other hand, the intrinsic fluorescence and absorbance measurements consistently revealed that on average 1.4×103 CA molecules were conjugated to a liposome, suggesting that the molecular orientation of enzyme affected its activity. The formation of calcium carbonate particles was significantly accelerated by the CALs ([lipid]=50μ M) in the 0.3M Tris solution at 10-40°C with dissolved CO2 (≈17mM) and CaCl2 (46mM). The anionic CALs were adsorbed with calcium as revealed with the ζ-potential measurements. The CAL system offered the calcium-rich colloidal interface where the bicarbonate ions were catalytically produced by the liposome-conjugated CA molecules. The CALs also functioned in the external loop airlift bubble column operated with a model flue gas (10vol/vo% CO2), yielding partly agglomerated calcium carbonate particles as observed with the scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Keisuke Maeshima
- Department of Applied Molecular Bioscience, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan.
| |
Collapse
|
17
|
Danchin A. From chemical metabolism to life: the origin of the genetic coding process. Beilstein J Org Chem 2017; 13:1119-1135. [PMID: 28684991 PMCID: PMC5480338 DOI: 10.3762/bjoc.13.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|