1
|
Stoukatch S, Dupont F, Redouté JM. Device Processing Challenges for Miniaturized Sensing Systems Targeting Biological Fluids. BIOMEDICAL MATERIALS & DEVICES 2022. [PMCID: PMC9510362 DOI: 10.1007/s44174-022-00034-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 09/29/2023]
Abstract
This article presents a review of device processing technologies used in the fabrication of biomedical systems, and highlights the requirements of advanced manufacturing technology. We focus on biomedical systems that perform diagnostics of fluidic specimens, with analytes that are in the liquid phase. In the introduction, we define biomedical systems as well as their versatile applications and the essential current trends. The paper gives an overview of the most important biomolecules that typically must be detected or analyzed in several applications. The paper is structured as follows. First, the conventional architecture and construction of a biosensing system is introduced. We provide an overview of the most common biosensing methods that are currently used for the detection of biomolecules and its analysis. We present an overview of reported biochips, and explain the technology of biofunctionalization and detection principles, including their corresponding advantages and disadvantages. Next, we introduce microfluidics as a method for delivery of the specimen to the biochip sensing area. A special focus lies on material requirements and on manufacturing technology for fabricating microfluidic systems, both for niche and mass-scale production segments. We formulate requirements and constraints for integrating the biochips and microfluidic systems. The possible impacts of the conventional microassembly techniques and processing methods on the entire biomedical system and its specific parts are also described. On that basis, we explain the need for alternative microassembly technologies to enable the integration of biochips and microfluidic systems into fully functional systems.
Collapse
Affiliation(s)
- S. Stoukatch
- Microsys Lab, Department of Electrical Engineering and Computer Science, Liege University, Seraing, Belgium
| | - F. Dupont
- Microsys Lab, Department of Electrical Engineering and Computer Science, Liege University, Seraing, Belgium
| | - J.-M. Redouté
- Microsys Lab, Department of Electrical Engineering and Computer Science, Liege University, Seraing, Belgium
| |
Collapse
|
2
|
Moeller C, Schmidt C, Guyot F, Wilke M. Hydrolysis rate constants of ATP determined in situ at elevated temperatures. Biophys Chem 2022; 290:106878. [DOI: 10.1016/j.bpc.2022.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
|
3
|
Li YX, Rao YZ, Qi YL, Qu YN, Chen YT, Jiao JY, Shu WS, Jiang H, Hedlund BP, Hua ZS, Li WJ. Deciphering Symbiotic Interactions of " Candidatus Aenigmarchaeota" with Inferred Horizontal Gene Transfers and Co-occurrence Networks. mSystems 2021; 6:e0060621. [PMID: 34313464 PMCID: PMC8407114 DOI: 10.1128/msystems.00606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
"Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota") represents one of the earliest proposed evolutionary branches within the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, their ecological roles and potential host-symbiont interactions are still poorly understood. Here, eight metagenome-assembled genomes (MAGs) were reconstructed from hot spring ecosystems, and further in-depth comparative and evolutionary genomic analyses were conducted on these MAGs and other genomes downloaded from public databases. Although with limited metabolic capacities, we reported that "Ca. Aenigmarchaeota" in thermal environments harbor more genes related to carbohydrate metabolism than "Ca. Aenigmarchaeota" in nonthermal environments. Evolutionary analyses suggested that members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota contribute substantially to the niche expansion of "Ca. Aenigmarchaeota" via horizontal gene transfer (HGT), especially genes related to virus defense and stress responses. Based on co-occurrence network results and recent genetic exchanges among community members, we conjectured that "Ca. Aenigmarchaeota" may be symbionts associated with one MAG affiliated with the genus Pyrobaculum, though host specificity might be wide and variable across different "Ca. Aenigmarchaeota" organisms. This study provides significant insight into possible DPANN-host interactions and ecological roles of "Ca. Aenigmarchaeota." IMPORTANCE Recent advances in sequencing technology promoted the blowout discovery of super tiny microbes in the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, the unculturable properties of the majority of microbes impeded our investigation of their behavior and symbiotic lifestyle in the corresponding community. By integrating horizontal gene transfer (HGT) detection and co-occurrence network analysis on "Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota"), we made one of the first attempts to infer their putative interaction partners and further decipher the potential functional and genetic interactions between the symbionts. We revealed that HGTs contributed by members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota conferred "Ca. Aenigmarchaeota" with the ability to survive under different environmental stresses, such as virus infection, high temperature, and oxidative stress. This study demonstrates that the interaction partners might be inferable by applying informatics analyses on metagenomic sequencing data.
Collapse
Affiliation(s)
- Yu-Xian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ling Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ya-Ting Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China
| |
Collapse
|
4
|
Chu XY, Chen SM, Zhao KW, Tian T, Gao J, Zhang HY. Plausibility of Early Life in a Relatively Wide Temperature Range: Clues from Simulated Metabolic Network Expansion. Life (Basel) 2021; 11:738. [PMID: 34440482 PMCID: PMC8398716 DOI: 10.3390/life11080738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/29/2023] Open
Abstract
The debate on the temperature of the environment where life originated is still inconclusive. Metabolic reactions constitute the basis of life, and may be a window to the world where early life was born. Temperature is an important parameter of reaction thermodynamics, which determines whether metabolic reactions can proceed. In this study, the scale of the prebiotic metabolic network at different temperatures was examined by a thermodynamically constrained network expansion simulation. It was found that temperature has limited influence on the scale of the simulated metabolic networks, implying that early life may have occurred in a relatively wide temperature range.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (X.-Y.C.); (S.-M.C.); (K.-W.Z.); (T.T.); (J.G.)
| |
Collapse
|
5
|
Possibilities for an Aerial Biosphere in Temperate Sub Neptune-Sized Exoplanet Atmospheres. UNIVERSE 2021. [DOI: 10.3390/universe7060172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The search for signs of life through the detection of exoplanet atmosphere biosignature gases is gaining momentum. Yet, only a handful of rocky exoplanet atmospheres are suitable for observation with planned next-generation telescopes. To broaden prospects, we describe the possibilities for an aerial, liquid water cloud-based biosphere in the atmospheres of sub Neptune-sized temperate exoplanets, those receiving Earth-like irradiation from their host stars. One such planet is known (K2-18b) and other candidates are being followed up. Sub Neptunes are common and easier to study observationally than rocky exoplanets because of their larger sizes, lower densities, and extended atmospheres or envelopes. Yet, sub Neptunes lack any solid surface as we know it, so it is worthwhile considering whether their atmospheres can support an aerial biosphere. We review, synthesize, and build upon existing research. Passive microbial-like life particles must persist aloft in a region with liquid water clouds for long enough to metabolize, reproduce, and spread before downward transport to lower altitudes that may be too hot for life of any kind to survive. Dynamical studies are needed to flesh out quantitative details of life particle residence times. A sub Neptune would need to be a part of a planetary system with an unstable asteroid belt in order for meteoritic material to provide nutrients, though life would also need to efficiently reuse and recycle metals. The origin of life may be the most severe limiting challenge. Regardless of the uncertainties, we can keep an open mind to the search for biosignature gases as a part of general observational studies of sub Neptune exoplanets.
Collapse
|
6
|
Extreme thermophiles as emerging metabolic engineering platforms. Curr Opin Biotechnol 2019; 59:55-64. [DOI: 10.1016/j.copbio.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
7
|
|
8
|
Lejars M, Kobayashi A, Hajnsdorf E. Physiological roles of antisense RNAs in prokaryotes. Biochimie 2019; 164:3-16. [PMID: 30995539 DOI: 10.1016/j.biochi.2019.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.
Collapse
Affiliation(s)
- Maxence Lejars
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Asaki Kobayashi
- SABNP, INSERM U1204, Université d'Evry Val-d'Essonne, Bâtiment Maupertuis, Rue du Père Jarlan, 91000, Évry Cedex, France.
| | - Eliane Hajnsdorf
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
9
|
|
10
|
Abstract
The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets.
Collapse
|
11
|
Catling DC, Krissansen-Totton J, Kiang NY, Crisp D, Robinson TD, DasSarma S, Rushby AJ, Del Genio A, Bains W, Domagal-Goldman S. Exoplanet Biosignatures: A Framework for Their Assessment. ASTROBIOLOGY 2018; 18:709-738. [PMID: 29676932 PMCID: PMC6049621 DOI: 10.1089/ast.2017.1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, 709-738.
Collapse
Affiliation(s)
- David C. Catling
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Joshua Krissansen-Totton
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - David Crisp
- MS 233-200, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Tyler D. Robinson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University of Maryland, Baltimore, Maryland
| | | | | | - William Bains
- Department of Earth, Atmospheric and Planetary Science, Cambridge, Massachusetts
| | | |
Collapse
|
12
|
Abstract
Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a "deep, hot biosphere" in the Earth's crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H2, CH4, and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth's subsurface in the form of a deep subsurface microbiome initiative.
Collapse
|
13
|
Seager S, Bains W, Petkowski JJ. Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry. ASTROBIOLOGY 2016; 16:465-485. [PMID: 27096351 DOI: 10.1089/ast.2015.1404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth's atmospheric spectrum (O2, CH4, N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl). Life on Earth produces thousands of different gases (although most in very small quantities). Some might be produced and/or accumulate in an exo-Earth atmosphere to high levels, depending on the exo-Earth ecology and surface and atmospheric chemistry. To maximize our chances of recognizing biosignature gases, we promote the concept that all stable and potentially volatile molecules should initially be considered as viable biosignature gases. We present a new approach to the subject of biosignature gases by systematically constructing lists of volatile molecules in different categories. An exhaustive list up to six non-H atoms is presented, totaling about 14,000 molecules. About 2500 of these are CNOPSH compounds. An approach for extending the list to larger molecules is described. We further show that about one-fourth of CNOPSH molecules (again, up to N = 6 non-H atoms) are known to be produced by life on Earth. The list can be used to study classes of chemicals that might be potential biosignature gases, considering their accumulation and possible false positives on exoplanets with atmospheres and surface environments different from Earth's. The list can also be used for terrestrial biochemistry applications, some examples of which are provided. We provide an online community usage database to serve as a registry for volatile molecules including biogenic compounds. KEY WORDS Astrobiology-Atmospheric gases-Biosignatures-Exoplanets. Astrobiology 16, 465-485.
Collapse
Affiliation(s)
- S Seager
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 2 Department of Physics, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - W Bains
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 3 Rufus Scientific , Cambridge, UK
| | - J J Petkowski
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
14
|
How Likely Are We? Evolution of Organismal Complexity. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|