1
|
Hlouchová K. Peptides En Route from Prebiotic to Biotic Catalysis. Acc Chem Res 2024; 57:2027-2037. [PMID: 39016062 PMCID: PMC11308367 DOI: 10.1021/acs.accounts.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
ConspectusIn the quest to understand prebiotic catalysis, different molecular entities, mainly minerals, metal ions, organic cofactors, and ribozymes, have been implied as key players. Of these, inorganic and organic cofactors have gained attention for their ability to catalyze a wide array of reactions central to modern metabolism and frequently participate in these reactions within modern enzymes. Nevertheless, bridging the gap between prebiotic and modern metabolism remains a fundamental question in the origins of life.In this Account, peptides are investigated as a potential bridge linking prebiotic catalysis by minerals/cofactors to enzymes that dominate modern life's chemical reactions. Before ribosomal synthesis emerged, peptides of random sequences were plausible on early Earth. This was made possible by different sources of amino acid delivery and synthesis, as well as their condensation under a variety of conditions. Early peptides and proteins probably exhibited distinct compositions, enriched in small aliphatic and acidic residues. An increase in abundance of amino acids with larger side chains and canonical basic groups was most likely dependent on the emergence of their more challenging (bio)synthesis. Pressing questions thus arise: how did this composition influence the early peptide properties, and to what extent could they contribute to early metabolism?Recent research from our group and colleagues shows that highly acidic peptides/proteins comprising only the presumably "early" amino acids are in fact competent at secondary structure formation and even possess adaptive folding characteristics such as spontaneous refoldability and chaperone independence to achieve soluble structures. Moreover, we showed that highly acidic proteins of presumably "early" composition can still bind RNA by utilizing metal ions as cofactors to bridge carboxylate and phosphoester functional groups. And finally, ancient organic cofactors were shown to be capable of binding to sequences from amino acids considered prebiotically plausible, supporting their folding properties and providing functional groups, which would nominate them as catalytic hubs of great prebiotic relevance.These findings underscore the biochemical plausibility of an early peptide/protein world devoid of more complex amino acids yet collaborating with other catalytic species. Drawing from the mechanistic properties of protein-cofactor catalysis, it is speculated here that the early peptide/protein-cofactor ensemble could facilitate a similar range of chemical reactions, albeit with lower catalytic rates. This hypothesis invites a systematic experimental test.Nonetheless, this Account does not exclude other scenarios of prebiotic-to-biotic catalysis or prioritize any specific pathways of prebiotic syntheses. The objective is to examine peptide availability, composition, and functional potential among the various factors involved in the emergence of early life.
Collapse
Affiliation(s)
- Klára Hlouchová
- Department
of Cell Biology, Faculty of Science, Charles
University, Prague 12800, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 16610, Czech Republic
| |
Collapse
|
2
|
Maguire OR, Smokers IBA, Oosterom BG, Zheliezniak A, Huck WTS. A Prebiotic Precursor to Life's Phosphate Transfer System with an ATP Analog and Histidyl Peptide Organocatalysts. J Am Chem Soc 2024; 146:7839-7849. [PMID: 38448161 PMCID: PMC10958518 DOI: 10.1021/jacs.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Biochemistry is dependent upon enzyme catalysts accelerating key reactions. At the origin of life, prebiotic chemistry must have incorporated catalytic reactions. While this would have yielded much needed amplification of certain reaction products, it would come at the possible cost of rapidly depleting the high energy molecules that acted as chemical fuels. Biochemistry solves this problem by combining kinetically stable and thermodynamically activated molecules (e.g., ATP) with enzyme catalysts. Here, we demonstrate a prebiotic phosphate transfer system involving an ATP analog (imidazole phosphate) and histidyl peptides, which function as organocatalytic enzyme analogs. We demonstrate that histidyl peptides catalyze phosphorylations via a phosphorylated histidyl intermediate. We integrate these histidyl-catalyzed phosphorylations into a complete prebiotic scenario whereby inorganic phosphate is incorporated into organic compounds though physicochemical wet-dry cycles. Our work demonstrates a plausible system for the catalyzed production of phosphorylated compounds on the early Earth and how organocatalytic peptides, as enzyme precursors, could have played an important role in this.
Collapse
Affiliation(s)
- Oliver R. Maguire
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Iris B. A. Smokers
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Bob G. Oosterom
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Alla Zheliezniak
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| |
Collapse
|
3
|
Tilly DP, McColl C, Hu M, Vitórica-Yrezábal IJ, Webb SJ. Enantioselective conjugate addition to nitroolefins catalysed by helical peptides with a single remote stereogenic centre. Org Biomol Chem 2023; 21:9562-9571. [PMID: 38009076 DOI: 10.1039/d3ob01594g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Two short pentapeptides rich in α-aminoisobutyric acid (Aib) residues have been shown to act as enantioselective organocatalysts for the conjugate addition of nucleophiles to nitroolefins. An L-alanine terminated peptide, (Aib)4(L-Ala)NHtBu, which has neither functionalised sidechains nor a highly designed reactive site, used an exposed N-terminal primary amine and the amide bonds of the backbone to mediate catalysis. Folding of this peptide into a 310 helical structure was observed by crystallography. Folding into a helix relays the conformational preference of the chiral alanine residue at the C-terminus to the primary amine at the N-terminus, 0.9 nm distant. The chiral environment and defined shape produced by the 310 helix brings the amine site into proximity to two exposed amide NHs. Reaction scope studies implied that the amine acts as a Brønsted base and the solvent-exposed NH groups of the helix, shown to weakly bind β-nitrostyrene, are needed to obtain an enantiomeric excess. Replacement of L-alanine with D-phenylalanine gave (Aib)4(D-Phe)NHtBu, a peptide that now catalysed the benchmark reaction with the opposite enantioselectivity. These studies show how achiral residues can play a key role in enantioselective catalysis by peptides through the promotion of folding.
Collapse
Affiliation(s)
- David P Tilly
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Catherine McColl
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Mingda Hu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
4
|
Wang S, Teng H, Wang L, Li P, Yuan X, Sang X, Wu J, Yang L, Xu G. A Simple Screening and Optimization Bioprocess for Long-Chain Peptide Catalysts Applied to Asymmetric Aldol Reaction. Molecules 2023; 28:6985. [PMID: 37836827 PMCID: PMC10574572 DOI: 10.3390/molecules28196985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Peptides have demonstrated their efficacy as catalysts in asymmetric aldol reactions. But the constraints inherent in chemical synthesis have imposed limitations on the viability of long-chain peptide catalysts. A noticeable dearth of tools has impeded the swift and effective screening of peptide catalysts using biological methods. To address this, we introduce a straightforward bioprocess for the screening of peptide catalysts for asymmetric aldol reactions. We synthesized several peptides through this method and obtained a 15-amino acid peptide. This peptide exhibited asymmetric aldol catalytic activity, achieving 77% ee in DMSO solvent and 63% ee with over an 80.8% yield in DMSO mixed with a pH 9.0 buffer solution. The successful application of our innovative approach not only represents an advancement but also paves the way for currently unexplored research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Mandal R, Ghosh A, Rout NK, Prasad M, Hazra B, Sar S, Das S, Datta A, Tarafdar PK. Self-assembled prebiotic amphiphile-mixture exhibits tunable catalytic properties. Org Biomol Chem 2023; 21:4473-4481. [PMID: 37194351 DOI: 10.1039/d3ob00606a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protocellular surface formation via the self-assembly of amphiphiles, and catalysis by simple peptides/proto-RNA are two important pillars in the evolution of protocells. To hunt for prebiotic self-assembly-supported catalytic reactions, we thought that amino-acid-based amphiphiles might play an important role. In this paper, we investigate the formation of histidine-based and serine-based amphiphiles under mild prebiotic conditions from amino acid : fatty alcohol and amino acid : fatty acid mixtures. The histidine-based amphiphiles were able to catalyze hydrolytic reactions at the self-assembled surface (with a rate increase of ∼1000-fold), and the catalytic ability can be tuned by linkage of the fatty carbon part to histidine (N-acylated vs. O-acylated). Moreover, the presence of cationic serine-based amphiphiles on the surface enhances the catalytic efficiency by another ∼2-fold, whereas the presence of anionic aspartic acid-based amphiphiles reduces the catalytic activity. Ester partitioning into the surface, reactivity, and the accumulation of liberated fatty acid explain the substrate selectivity of the catalytic surface, where the hexyl esters were found to be more hydrolytic than other fatty acyl esters. Di-methylation of the -NH2 of OLH increases the catalytic efficacy by a further ∼2-fold, whereas trimethylation reduces the catalytic ability. The self-assembly, charge-charge repulsion, and the H-bonding to the ester carbonyl are likely to be responsible for the superior (∼2500-fold higher rate than the pre-micellar OLH) catalytic efficiency of O-lauryl dimethyl histidine (OLDMH). Thus, prebiotic amino-acid-based surfaces served as an efficient catalyst that exhibits regulation of catalytic function, substrate selectivity, and further adaptability to perform bio-catalysis.
Collapse
Affiliation(s)
- Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Anupam Ghosh
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nilesh K Rout
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Sanu Sar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Ayan Datta
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| |
Collapse
|
6
|
Arad E, Yosefi G, Kolusheva S, Bitton R, Rapaport H, Jelinek R. Native Glucagon Amyloids Catalyze Key Metabolic Reactions. ACS NANO 2022; 16:12889-12899. [PMID: 35866668 DOI: 10.1021/acsnano.2c05166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glucagon is a prominent peptide hormone, playing central roles in the regulation of glucose blood-level and lipid metabolism. Formation of glucagon amyloid fibrils has been previously reported, although no biological functions of such fibrils are known. Here, we demonstrate that glucagon amyloid fibrils catalyze biologically important reactions, including esterolysis, lipid hydrolysis, and dephosphorylation. In particular, we found that glucagon fibrils catalyze dephosphorylation of adenosine triphosphate (ATP), a core metabolic reaction in cell biology. Comparative analysis of several glucagon variants allowed mapping the catalytic activity to an enzymatic pocket-like triad formed at the glucagon fibril surface, comprising the histidyl-serine domain at the N-terminus of the peptide. This study may point to previously unknown physiological roles and pathological consequences of glucagon fibrillation and supports the hypothesis that catalytic activities of native amyloid fibrils play functional roles in human physiology and disease.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gal Yosefi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ronit Bitton
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
7
|
Mayer C. Spontaneous Formation of Functional Structures in Messy Environments. Life (Basel) 2022; 12:720. [PMID: 35629387 PMCID: PMC9148140 DOI: 10.3390/life12050720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/14/2023] Open
Abstract
Even though prebiotic chemistry initially deals with simple molecules, its composition rapidly gains complexity with oligomerization. Starting with, e.g., 20 monomers (such as the 20 proteinogenic amino acids), we expect 400 different dimers, 3,200,000 pentamers, or more than 1013 decamers. Hence, the starting conditions are very messy but also form a very powerful pool of potentially functional oligomers. A selecting structure (a "selector" such as membrane multilayers or vesicles) may pick and accumulate those molecules from the pool that fulfill a simple function (such as the suitability to integrate into a bilayer membrane). If this "selector" is, in turn, subject to a superimposed selection in a periodic process, the accumulated oligomers may be further trimmed to fulfill more complex functions, which improve the survival rate of the selectors. Successful oligomers will be passed from generation to generation and further improved in subsequent steps. After thousands of generations, the selector, together with its integrated oligomers, can form a functional unit of considerable order and complexity. The actual power of this process of random formation and selection has already been shown in laboratory experiments. In this concept paper, earlier results are summarized and brought into a new context.
Collapse
Affiliation(s)
- Christian Mayer
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
8
|
Kumar A, Nothling MD, Aitken HM, Xiao Z, Lam M, Bell CA, O'Mara ML, Connal LA. Simple synthetic route to an enzyme-inspired transesterification catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembling transesterification catalyst inspired by the catalytic triad.
Collapse
Affiliation(s)
- Ashwani Kumar
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | | | - Heather M. Aitken
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Matthew Lam
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Craig A. Bell
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Megan L. O'Mara
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
9
|
Kovalenko SP. On the Origin of Genetically Coded Protein Synthesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Piast RW, Wieczorek RM, Marzec N, Garstka M, Misicka A. A Phage Display-Identified Short Peptide Capable of Hydrolyzing Calcium Pyrophosphate Crystals-The Etiological Factor of Chondrocalcinosis. Molecules 2021; 26:molecules26195777. [PMID: 34641321 PMCID: PMC8510196 DOI: 10.3390/molecules26195777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Chondrocalcinosis is a metabolic disease caused by the presence of calcium pyrophosphate dihydrate crystals in the synovial fluid. The goal of our endeavor was to find out whether short peptides could be used as a dissolving factor for such crystals. In order to identify peptides able to dissolve crystals of calcium pyrophosphate, we screened through a random library of peptides using a phage display. The first screening was designed to select phages able to bind the acidic part of alendronic acid (pyrophosphate analog). The second was a catalytic assay in the presence of crystals. The best-performing peptides were subsequently chemically synthesized and rechecked for catalytic properties. One peptide, named R25, turned out to possess some hydrolytic activity toward crystals. Its catalysis is Mg2+-dependent and also works against soluble species of pyrophosphate.
Collapse
Affiliation(s)
- Radosław W. Piast
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Correspondence: (R.W.P.); (A.M.)
| | - Rafał M. Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Nicola Marzec
- Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Stefana Banacha 2C, 02-087 Warsaw, Poland;
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Correspondence: (R.W.P.); (A.M.)
| |
Collapse
|
11
|
Wei C, Pohorille A. Fast bilayer-micelle fusion mediated by hydrophobic dipeptides. Biophys J 2021; 120:2330-2342. [PMID: 33887225 DOI: 10.1016/j.bpj.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022] Open
Abstract
To understand the transition from inanimate matter to life, we studied a process that directly couples simple metabolism to evolution via natural selection, demonstrated experimentally by Adamala and Szostak. In this process, dipeptides synthesized inside precursors of cells promote absorption of fatty acid micelles to vesicles, inducing their preferential growth and division at the expense of other vesicles. The process is explained on the basis of coarse-grained molecular dynamics simulations, each extending for tens of microseconds, carried out to model fusion between a micelle and a membrane, both made of fatty acids in the absence and presence of hydrophobic dipeptides. In all systems with dipeptides, but not in their absence, fusion events were observed. They involve the formation of a stalk made by hydrophobic chains from the micelle and the membrane, similar to that postulated for vesicle-vesicle fusion. The emergence of a stalk is facilitated by transient clusters of dipeptides, side chains of which form hydrophobic patches at the membrane surface. Committor probability calculations indicate that the size of a patch is a suitable reaction coordinate and allows for identifying the transition state for fusion. Free-energy barrier to fusion is greatly reduced in the presence of dipeptides to only 4-5 kcal/mol, depending on the hydrophobicity of side chains. The mechanism of mediated fusion, which is expected to apply to other small peptides and hydrophobic molecules, provides a robust means by which a nascent metabolism can confer evolutionary advantage to precursors of cells.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Moffett Field, California; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Andrew Pohorille
- NASA Ames Research Center, Moffett Field, California; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California.
| |
Collapse
|
12
|
Affiliation(s)
- Dragana Despotovic
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 7610001 Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
13
|
Peme T, Brady D, Juma W, Makatini M. Development of fructose-1,6-bisphosphate aldolase enzyme peptide mimics as biocatalysts in direct asymmetric aldol reactions. RSC Adv 2021; 11:36670-36681. [PMID: 35494350 PMCID: PMC9043830 DOI: 10.1039/d1ra06616a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022] Open
Abstract
This study describes the design and synthesis of mimetic peptides modelled on the catalytic active site of the fructose-1,6-bisphosphate aldolase (FBPA) enzyme. The synthesized peptides consisting of the turn motifs and catalytic site amino acids of FBPA enzyme were evaluated for catalytic activity in direct asymmetric aldol reactions of ketones and aldehydes. The influence of substrate scope, catalyst loading and solvents including water, on the reaction were also investigated. Nuclear magnetic resonance (NMR) and circular dichroism (CD) were used to determine the secondary structure of the peptides to provide an understanding of the structure–activity relationship. The peptides showed catalytic activity and the aldol products were obtained in low yields (up to 44%), but excellent enantioselectivity (up to 93%) and moderate diastereoselectivity (65 : 35). Novel asymmetric aldol reaction catalysing fructose-1,6-bisphosphate aldolase peptide mimics with secondary structural motifs.![]()
Collapse
Affiliation(s)
- Thabo Peme
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
| | - Wanyama Juma
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
| | - Maya Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
| |
Collapse
|
14
|
Piast RW, Garstka M, Misicka A, Wieczorek RM. Small Cyclic Peptide for Pyrophosphate Dependent Ligation in Prebiotic Environments. Life (Basel) 2020; 10:life10070103. [PMID: 32630714 PMCID: PMC7400013 DOI: 10.3390/life10070103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 11/28/2022] Open
Abstract
All life on Earth uses one universal biochemistry stemming from one universal common ancestor of all known living organisms. One of the most striking features of this universal biochemistry is its utter dependence on phosphate group transfer between biochemical molecules. Both nucleic acid and peptide biological synthesis relies heavily on phosphate group transfer. Such dependents strongly indicate very early incorporation of phosphate chemistry in the origin of life. Perhaps as early as prebiotic soup stage. We report here on a short cyclic peptide, c(RPDDHR), designed rationally for pyrophosphate interaction, which is able to create a new amide bond dependent on the presence of pyrophosphate. We believe this result to be a first step in the exploration of Phosphate Transfer Catalysts that must have been present and active in prebiotic soup and must have laid down foundations for the universal bioenergetics.
Collapse
Affiliation(s)
- Radosław W. Piast
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (R.W.P.); (A.M.)
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (R.W.P.); (A.M.)
| | - Rafał M. Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (R.W.P.); (A.M.)
- Correspondence:
| |
Collapse
|
15
|
Recent advances in reactions promoted by amino acids and oligopeptides. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
During the last 20 years, Organocatalysis has become one of the major fields of Catalysis. Herein, we provide a recent overview on reactions where the use of amino acids and peptides as the organocatalysts was employed. All aspects regarding aldol reactions, Michael reactions, epoxidation, Henry reactions and many others that are crucial for the reaction conditions and reaction mechanisms are discussed.
Collapse
|
16
|
Nothling MD, Xiao Z, Hill NS, Blyth MT, Bhaskaran A, Sani MA, Espinosa-Gomez A, Ngov K, White J, Buscher T, Separovic F, O’Mara ML, Coote ML, Connal LA. A multifunctional surfactant catalyst inspired by hydrolases. SCIENCE ADVANCES 2020; 6:eaaz0404. [PMID: 32270041 PMCID: PMC7112759 DOI: 10.1126/sciadv.aaz0404] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 05/04/2023]
Abstract
The remarkable power of enzymes to undertake catalysis frequently stems from their grouping of multiple, complementary chemical units within close proximity around the enzyme active site. Motivated by this, we report here a bioinspired surfactant catalyst that incorporates a variety of chemical functionalities common to hydrolytic enzymes. The textbook hydrolase active site, the catalytic triad, is modeled by positioning the three groups of the triad (-OH, -imidazole, and -CO2H) on a single, trifunctional surfactant molecule. To support this, we recreate the hydrogen bond donating arrangement of the oxyanion hole by imparting surfactant functionality to a guanidinium headgroup. Self-assembly of these amphiphiles in solution drives the collection of functional headgroups into close proximity around a hydrophobic nano-environment, affording hydrolysis of a model ester at rates that challenge α-chymotrypsin. Structural assessment via NMR and XRD, paired with MD simulation and QM calculation, reveals marked similarities of the co-micelle catalyst to native enzymes.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Nicholas S. Hill
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrea Espinosa-Gomez
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin Ngov
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jonathan White
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tim Buscher
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Corresponding author.
| |
Collapse
|
17
|
Sproul GD. Membranes Composed of Lipopeptides and Liponucleobases Inspired Protolife Evolution. ORIGINS LIFE EVOL B 2019; 49:241-254. [PMID: 31883067 DOI: 10.1007/s11084-019-09587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022]
Abstract
Amino acids and peptides have been demonstrated to form lipoamino acids and lipopeptides under presumed prebiotic conditions, and readily form liposomes. Of the common nucleobases, adenine forms a liponucleobase even below 100 °C. Adenine as well as other nucleobases can also be derivatized with ethylene carbonate (and likely other similar compounds) onto which fatty acids can be attached. The fatty acid tails along with appropriately functionalized nucleobases provide some solubility of liponucleobases in membranes. Such membranes would provide a structure in which three of biology's major components are closely associated and available for chemical interactions. Nucleobase-to-nucleobase interactions would ensure that the liponucleobases would have a uniquely different head-group relationship than other amphiphiles within a membrane, likely forming rafts due their π-π interactions and providing surface discontinuities that could serve as catalytic sites. The π-π bond distance in aromatic compounds is typically 0.34 nm, commensurate with that of the amine to carboxylate distance in alpha amino acids. This would have provided opportunity for hydrogen bonding between amino acids and the distal primary amines or tautomeric carbonyl/hydroxyl groups of two π-bonded nucleobases. Such bonding would weaken the covalent linkages within the amino acids, making them susceptible to forming peptide bonds with an adjacent amino acid, likely a lipoamino acid or lipopeptide. Were this second lipoamino acid bound to a third π-bonded nucleobase, it could result in orientation, destabilization and peptide formation. The stacked triplet of nucleobases might constitute the primordial codon triplet from which peptides were synthesized: primordial translation.
Collapse
Affiliation(s)
- Gordon D Sproul
- University of South Carolina Beaufort (USCB), One University Blvd, Bluffton, SC, 29909; 37 Barnwell Dr, Beaufort, SC, 29907, USA.
| |
Collapse
|
18
|
Campbell TD, Febrian R, McCarthy JT, Kleinschmidt HE, Forsythe JG, Bracher PJ. Prebiotic condensation through wet-dry cycling regulated by deliquescence. Nat Commun 2019; 10:4508. [PMID: 31586058 PMCID: PMC6778215 DOI: 10.1038/s41467-019-11834-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Wet-dry cycling is widely regarded as a means of driving condensation reactions under prebiotic conditions to generate mixtures of prospective biopolymers. A criticism of this model is its reliance on unpredictable rehydration events, like rainstorms. Here, we report the ability of deliquescent minerals to mediate the oligomerization of glycine during iterative wet-dry cycles. The reaction mixtures evaporate to dryness at high temperatures and spontaneously reacquire water vapor to form aqueous solutions at low temperatures. Deliquescent mixtures can foster yields of oligomerization over ten-fold higher than non-deliquescent controls. The deliquescent mixtures tightly regulate their moisture content, which is crucial, as too little water precludes dissolution of the reactants while too much water favors hydrolysis over condensation. The model also suggests a potential reason why life evolved to favor the enrichment of potassium: so living systems could acquire and retain sufficient water to serve as a solvent for biochemical reactions.
Collapse
Affiliation(s)
- Thomas D Campbell
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri, 63103, USA
| | - Rio Febrian
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri, 63103, USA
| | - Jack T McCarthy
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri, 63103, USA
| | - Holly E Kleinschmidt
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri, 63103, USA
| | - Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Paul J Bracher
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri, 63103, USA.
| |
Collapse
|
19
|
de la Escosura A. The Informational Substrate of Chemical Evolution: Implications for Abiogenesis. Life (Basel) 2019; 9:E66. [PMID: 31398942 PMCID: PMC6789672 DOI: 10.3390/life9030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
A key aspect of biological evolution is the capacity of living systems to process information, coded in deoxyribonucleic acid (DNA), and used to direct how the cell works. The overall picture that emerges today from fields such as developmental, synthetic, and systems biology indicates that information processing in cells occurs through a hierarchy of genes regulating the activity of other genes through complex metabolic networks. There is an implicit semiotic character in this way of dealing with information, based on functional molecules that act as signs to achieve self-regulation of the whole network. In contrast to cells, chemical systems are not thought of being able to process information, yet they must have preceded biological organisms, and evolved into them. Hence, there must have been prebiotic molecular assemblies that could somehow process information, in order to regulate their own constituent reactions and supramolecular organization processes. The purpose of this essay is then to reflect about the distinctive features of information in living and non-living matter, and on how the capacity of biological organisms for information processing was possibly rooted in a particular type of chemical systems (here referred to as autonomous chemical systems), which could self-sustain and reproduce through organizational closure of their molecular building blocks.
Collapse
Affiliation(s)
- Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma of Madrid, Cantoblanco Campus, 28049 Madrid, Spain.
- Department of Organic Chemistry, Institute for Advanced Research in Chemistry (IAdChem), Cantoblanco Campus, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Liu M, Yang S, Yang J, Lee Y, Kou J, Wang C. Neuroprotective and Memory-Enhancing Effects of Antioxidant Peptide From Walnut (Juglans regia L.) Protein Hydrolysates. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19865838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peptides have been reported to possess interesting biological properties. The present study was designed to evaluate neuroprotective and memory-enhancing effects of antioxidant peptide from walnut ( Juglans regia L.) protein hydrolysates. The neuroprotective effect of walnut peptide (WP) against oxidative stress on PC12 cells was evaluated. And zebrafish was used as the model to corroborate the effect. Its effect on learning and memory of mice using the Morris water maze and the step-down passive avoidance tests were performed. Moreover, the acute toxicity of WP was carried out to assess its safety profile. It was found that WP was able to suppress H2O2-induced cell death in PC12 cells. In the zebrafish model, WP had an obvious neuroprotective effect, and the ratio reached 42% at 222 µg/mL. The mechanism study revealed that WP could inhibit the activity of caspases 3/7 and 8, reduce the mRNA expression levels of Bax and glial cell line-derived neurotrophic factor, and improve the mRNA expression level of brain-derived neurotrophic factor significantly. Besides, the treatment of mice with WP shortened the escape latency and exhibited much longer target time and more crossing times significantly, compared with untreated control groups in the Morris water maze test. Similarly, the step-down passive avoidance test showed that WP could ameliorate memory impairments. The administrated dose (20.1 g/kg body weight [BW]) did not produce mortality or treatment-related adverse effects with regard to BW, general behavior, or relative organ weights of the tested male and female mice. The current results indicated that WP could exert neuroprotective effect, and attenuated learning and memory impairments. These ameliorating effects of WP may be useful for treatment of memory impairment in Alzheimer’s and its related diseases.
Collapse
Affiliation(s)
- Mingchuan Liu
- R&D Center, Sinphar Tian-Li Pharmaceutical Co., Ltd., Hangzhou, China
| | - Shengjie Yang
- R&D Center, Sinphar Tian-Li Pharmaceutical Co., Ltd., Hangzhou, China
| | - Jinping Yang
- R&D Center, Sinphar Tian-Li Pharmaceutical Co., Ltd., Hangzhou, China
| | - Yita Lee
- R&D Center, Sinphar Pharmaceutical Co., Ltd., Ilan, Republic of China
| | - Junping Kou
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Chaojih Wang
- R&D Center, Sinphar Tian-Li Pharmaceutical Co., Ltd., Hangzhou, China
- R&D Center, Sinphar Pharmaceutical Co., Ltd., Ilan, Republic of China
| |
Collapse
|
21
|
Schreiber A, Huber MC, Schiller SM. Prebiotic Protocell Model Based on Dynamic Protein Membranes Accommodating Anabolic Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9593-9610. [PMID: 31287709 DOI: 10.1021/acs.langmuir.9b00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The nature of the first prebiotic compartments and their possible minimal molecular composition is of great importance in the origin of life scenarios. Current protocell model membranes are proposed to be lipid-based. This paradigm has several shortcomings such as limited membrane stability of monoacyl lipid-based membranes (e.g., fatty acids), missing pathways to synthesize protocell membrane components (e.g., phospholipids) under early earth conditions, and the requirement for different classes of molecules for the formation of compartments and the catalysis of reactions. Amino acids on the other hand are known to arise and persist with remarkable abundance under early earth conditions since the fundamental Miller-Urey experiments. They were also postulated early to form protocellular structures, for example, proteinoid capsules. Here, we present a protocell model constituted by membranes assembled from amphiphilic proteins based on prebiotic amino acids. Self-assembled dynamic protein membrane-based compartments (PMBCs) are impressively stable and compatible with prevalent cellular membrane constituents forming protein-only or protein-lipid hybrid membranes. They can embed processes essential for extant living cells, such as enclosure of molecules, membrane fusion, phase separation, and complex biosynthetic elements from modern cells demonstrating "upward" compatibility. Our findings suggest that prebiotic PMBCs represent a new type of protocell as a possible ancestor of current lipid-based cells. The presented prebiotic PMBC model can be used to design artificial cells, important for the study of structural, catalytic, and evolutionary pathways related to the emergence of life.
Collapse
Affiliation(s)
- Andreas Schreiber
- Zentrum für Biosystemanalyse (ZBSA) , Albert-Ludwigs-Universität Freiburg , 7 Habsburgerstrasse 49 , D-79104 Freiburg , Germany
- Faculty of Biology , University of Freiburg , Schänzlestrasse 1 , D-79104 Freiburg , Germany
| | - Matthias C Huber
- Zentrum für Biosystemanalyse (ZBSA) , Albert-Ludwigs-Universität Freiburg , 7 Habsburgerstrasse 49 , D-79104 Freiburg , Germany
- Faculty of Biology , University of Freiburg , Schänzlestrasse 1 , D-79104 Freiburg , Germany
| | - Stefan M Schiller
- Zentrum für Biosystemanalyse (ZBSA) , Albert-Ludwigs-Universität Freiburg , 7 Habsburgerstrasse 49 , D-79104 Freiburg , Germany
- Faculty of Biology , University of Freiburg , Schänzlestrasse 1 , D-79104 Freiburg , Germany
- BIOSS Centre for Biological Signalling Studies , University of Freiburg , Schänzlestrasse 18 , D-79104 Freiburg , Germany
- IMTEK Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , D-79110 Freiburg , Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies , University of Freiburg , Georges-Köhler-Allee 105 , D-79110 Freiburg , Germany
| |
Collapse
|
22
|
Lopez A, Fiore M. Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life (Basel) 2019; 9:E49. [PMID: 31181679 PMCID: PMC6616946 DOI: 10.3390/life9020049] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.
Collapse
Affiliation(s)
- Augustin Lopez
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon CEDEX 07, France.
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
| |
Collapse
|
23
|
Hordijk W, Steel M, Kauffman SA. Molecular Diversity Required for the Formation of Autocatalytic Sets. Life (Basel) 2019; 9:life9010023. [PMID: 30823659 PMCID: PMC6462942 DOI: 10.3390/life9010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/26/2022] Open
Abstract
Systems chemistry deals with the design and study of complex chemical systems. However, such systems are often difficult to investigate experimentally. We provide an example of how theoretical and simulation-based studies can provide useful insights into the properties and dynamics of complex chemical systems, in particular of autocatalytic sets. We investigate the issue of the required molecular diversity for autocatalytic sets to exist in random polymer libraries. Given a fixed probability that an arbitrary polymer catalyzes the formation of other polymers, we calculate this required molecular diversity theoretically for two particular models of chemical reaction systems, and then verify these calculations by computer simulations. We also argue that these results could be relevant to an origin of life scenario proposed recently by Damer and Deamer.
Collapse
Affiliation(s)
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch 8140, New Zealand.
| | | |
Collapse
|
24
|
Single-Frame, Multiple-Frame and Framing Motifs in Genes. Life (Basel) 2019; 9:life9010018. [PMID: 30744207 PMCID: PMC6463195 DOI: 10.3390/life9010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
We study the distribution of new classes of motifs in genes, a research field that has not been investigated to date. A single-frame motif SF has no trinucleotide in reading frame (frame 0) that occurs in a shifted frame (frame 1 or 2), e.g., the dicodon AAACAA is SF as the trinucleotides AAA and CAA do not occur in a shifted frame. A motif which is not single-frame SF is multiple-frame MF. Several classes of MF motifs are defined and analysed. The distributions of single-frame SF motifs (associated with an unambiguous trinucleotide decoding in the two 5′–3′ and 3′–5′ directions) and 5′ unambiguous motifs 5′U (associated with an unambiguous trinucleotide decoding in the 5′–3′ direction only) are analysed without and with constraints. The constraints studied are: initiation and stop codons, periodic codons {AAA,CCC,GGG,TTT}, antiparallel complementarity and parallel complementarity. Taken together, these results suggest that the complementarity property involved in the antiparallel (DNA double helix, RNA stem) and parallel sequences could also be fundamental for coding genes with an unambiguous trinucleotide decoding in the two 5′–3′ and 3′–5′ directions or the 5′–3′ direction only. Furthermore, the single-frame motifs SF with a property of trinucleotide decoding and the framing motifs F (also called circular code motifs; first introduced by Michel (2012)) with a property of reading frame decoding may have been involved in the early life genes to build the modern genetic code and the extant genes. They could have been involved in the stage without anticodon-amino acid interactions or in the Implicated Site Nucleotides (ISN) of RNA interacting with the amino acids. Finally, the SF and MF dipeptides associated with the SF and MF dicodons, respectively, are studied and their importance for biology and the origin of life discussed.
Collapse
|
25
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
Olatunde OO, Benjakul S. Natural Preservatives for Extending the Shelf-Life of Seafood: A Revisit. Compr Rev Food Sci Food Saf 2018; 17:1595-1612. [PMID: 33350137 DOI: 10.1111/1541-4337.12390] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022]
Abstract
Consumer demand for minimally processed seafood that retains its sensory and nutritional properties after handling and storage is increasing. Nevertheless, quality loss in seafood occurs immediately after death, during processing and storage, and is associated with enzymatic, microbiological, and chemical reactions. To maintain the quality, several synthetic additives (preservatives) are promising for preventing the changes in texture and color, development of unpleasant flavor and rancid odor, and loss of nutrients of seafood during storage at low temperature. However, the use of these preservatives has been linked to potential health hazards. In this regard, natural preservatives with excellent antioxidant and antimicrobial properties have been extensively searched and implemented as safe alternatives in seafood processing, with the sole purpose of extending shelf-life. Natural preservatives commonly used include plants extracts, chitosan and chitooligosaccharide, bacteriocins, bioactive peptides, and essential oils, among others. This review provides updated information about the production, mode of action, applications, and limitations of these natural preservatives in seafood preservation.
Collapse
Affiliation(s)
| | - Soottawat Benjakul
- Dept. of Food Technology, Faculty of Agro-Industry, Prince of Songkla Univ., Songkhla, 90112, Thailand
| |
Collapse
|
27
|
Fu M, Li J. Spontaneous Membrane Generation and Extension in a Dipeptide Single Crystal and Phospholipid Mixed System. Angew Chem Int Ed Engl 2018; 57:11404-11407. [PMID: 30009560 DOI: 10.1002/anie.201806347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Self-reproduction is one of the most important characteristics of lipid vesicles for origin of life research. Most vesicle self-reproduction systems are based on fatty acid vesicles and spontaneous phospholipid vesicle production is difficult owing to the relatively high stability of these vesicles. Now, spontaneous phospholipid vesicle generation and extension in a dipeptide/phospholipid system is demonstrated. Dissolution of the dipeptide crystal provides both the driving force and phospholipid constituents for vesicle generation and extension. This study provides a new system to enhance the understanding of vesicle self-reproduction mechanisms.
Collapse
Affiliation(s)
- Meifang Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
28
|
Fu M, Li J. Spontaneous Membrane Generation and Extension in a Dipeptide Single Crystal and Phospholipid Mixed System. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meifang Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid, Interface and Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100190 Beijing China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); CAS Key Lab of Colloid, Interface and Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100190 Beijing China
| |
Collapse
|
29
|
Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 2018; 15:20180159. [PMID: 30045888 PMCID: PMC6073634 DOI: 10.1098/rsif.2018.0159] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems-hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
Collapse
Affiliation(s)
- Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Zidovetzki
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Omer Markovitch
- Origins Center, Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
30
|
Vitas M, Dobovišek A. In the Beginning was a Mutualism - On the Origin of Translation. ORIGINS LIFE EVOL B 2018; 48:223-243. [PMID: 29713988 DOI: 10.1007/s11084-018-9557-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.
Collapse
Affiliation(s)
- Marko Vitas
- , Laze pri Borovnici 38, Borovnica, Slovenia.
| | - Andrej Dobovišek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| |
Collapse
|
31
|
Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines. PLoS One 2018; 13:e0196349. [PMID: 29698445 PMCID: PMC5919458 DOI: 10.1371/journal.pone.0196349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background The imidazole group is an ubiquitous chemical motif present in several key types of biomolecules. It is a structural moiety of purines, and plays a central role in biological catalysis as part of the side-chain of histidine, the amino acid most frequently found in the catalytic site of enzymes. Histidine biosynthesis starts with both ATP and the pentose phosphoribosyl pyrophosphate (PRPP), which is also the precursor for the de novo synthesis of purines. These two anabolic pathways are also connected by the imidazole intermediate 5-aminoimidazole-4-carboxamide ribotide (AICAR), which is synthesized in both routes but used only in purine biosynthesis. Rather surprisingly, the imidazole moieties of histidine and purines are synthesized by different, non-homologous enzymes. As discussed here, this phenomenon can be understood as a case of functional molecular convergence. Results In this work, we analyze these polyphyletic processes and argue that the independent origin of the corresponding enzymes is best explained by the differences in the function of each of the molecules to which the imidazole moiety is attached. Since the imidazole present in histidine is a catalytic moiety, its chemical arrangement allows it to act as an acid or a base. On the contrary, the de novo biosynthesis of purines starts with an activated ribose and all the successive intermediates are ribotides, with the key β-glycosidic bondage joining the ribose and the imidazole moiety. This prevents purine ribonucleotides to exhibit any imidazole-dependent catalytic activity, and may have been the critical trait for the evolution of two separate imidazole-synthesizing-enzymes. We also suggest that, in evolutionary terms, the biosynthesis of purines predated that of histidine. Conclusions As reviewed here, other biosynthetic routes for imidazole molecules are also found in extant metabolism, including the autocatalytic cyclization that occurs during the formation of creatinine from creatine phosphate, as well as the internal cyclization of the Ala-Ser-Gly motif of some members of the ammonia-lyase and aminomutase families, that lead to the MIO cofactor. The diversity of imidazole-synthesizing pathways highlights the biological significance of this key chemical group, whose biosyntheses evolved independently several times.
Collapse
|
32
|
|