1
|
Wang J, Marks JH, Fortenberry RC, Kaiser RI. Interstellar formation of glyceric acid [HOCH 2CH(OH)COOH]-The simplest sugar acid. SCIENCE ADVANCES 2024; 10:eadl3236. [PMID: 38478624 PMCID: PMC10936953 DOI: 10.1126/sciadv.adl3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Glyceric acid [HOCH2CH(OH)COOH]-the simplest sugar acid-represents a key molecule in biochemical processes vital for metabolism in living organisms such as glycolysis. Although critically linked to the origins of life and identified in carbonaceous meteorites with abundances comparable to amino acids, the underlying mechanisms of its formation have remained elusive. Here, we report the very first abiotic synthesis of racemic glyceric acid via the barrierless radical-radical reaction of the hydroxycarbonyl radical (HOĊO) with 1,2-dihydroxyethyl (HOĊHCH2OH) radical in low-temperature carbon dioxide (CO2) and ethylene glycol (HOCH2CH2OH) ices. Using isomer-selective vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, glyceric acid was identified in the gas phase based on the adiabatic ionization energies and isotopic substitution studies. This work reveals the key reaction pathways for glyceric acid synthesis through nonequilibrium reactions from ubiquitous precursor molecules, advancing our fundamental knowledge of the formation pathways of key biorelevant organics-sugar acids-in deep space.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H. Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ryan C. Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Ralf I. Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
2
|
Neeman EM, Huet TR. Unravelling the structural features of monosaccharide glyceraldehyde upon mono-hydration by quantum chemistry and rotational spectroscopy. J Chem Phys 2023; 159:194303. [PMID: 37971036 DOI: 10.1063/5.0176546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Water is a fundamental molecule for life, and investigating its interaction with monosaccharides is of great interest in order to understand its influence on their conformational behavior. In this study, we report on the conformational landscape of monosaccharide glyceraldehyde, the simplest aldose sugar, in the presence of a single water molecule in the gas phase. This investigation was performed using a combination of Fourier transform microwave spectroscopy and theoretical calculations. Out of the nine calculated conformers, only the lowest energy conformer was experimentally observed and characterized. Interestingly, the presence of water was found to induce structural features in the lowest energy conformer of the glyceraldehyde monomer, with water positioned between the alcohol groups. To analyze this interaction further, non-covalent interaction plots were employed to map the intermolecular interactions in the observed species. Additionally, natural bond orbital analysis was conducted to study the effects of charge transfer in the monohydrate system. Furthermore, topological analysis based on Bader's Atoms in Molecules theory was performed to gain insights into the observed complex. The results of all three analyses consistently showed the formation of relatively strong hydrogen bonds between water and glyceraldehyde, leading to the formation of a seven-member ring network.
Collapse
Affiliation(s)
- E M Neeman
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - T R Huet
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
3
|
Potiszil C, Yamanaka M, Sakaguchi C, Ota T, Kitagawa H, Kunihiro T, Tanaka R, Kobayashi K, Nakamura E. Organic Matter in the Asteroid Ryugu: What We Know So Far. Life (Basel) 2023; 13:1448. [PMID: 37511823 PMCID: PMC10381145 DOI: 10.3390/life13071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The Hayabusa2 mission was tasked with returning samples from the C-complex asteroid Ryugu (1999 JU3), in order to shed light on the formation, evolution and composition of such asteroids. One of the main science objectives was to understand whether such bodies could have supplied the organic matter required for the origin of life on Earth. Here, a review of the studies concerning the organic matter within the Ryugu samples is presented. This review will inform the reader about the Hayabusa2 mission, the nature of the organic matter analyzed and the various interpretations concerning the analytical findings including those concerning the origin and evolution of organic matter from Ryugu. Finally, the review puts the findings and individual interpretations in the context of the current theories surrounding the formation and evolution of Ryugu. Overall, the summary provided here will help to inform those operating in a wide range of interdisciplinary fields, including planetary science, astrobiology, the origin of life and astronomy, about the most recent developments concerning the organic matter in the Ryugu return samples and their relevance to understanding our solar system and beyond. The review also outlines the issues that still remain to be solved and highlights potential areas for future work.
Collapse
Affiliation(s)
- Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Masahiro Yamanaka
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Tsutomu Ota
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Hiroshi Kitagawa
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Ryoji Tanaka
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| |
Collapse
|
4
|
Krishnamurthy R, Goldman AD, Liberles DA, Rogers KL, Tor Y. Nucleobases in Meteorites to Nucleobases in RNA and DNA? J Mol Evol 2022; 90:328-331. [PMID: 35960316 DOI: 10.1007/s00239-022-10069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Nucleic acids likely played a foundational role in the origin of life. However, the prebiotic chemistry of nucleoside and nucleotide synthesis has proved challenging on a number of fronts. The recent discovery of both pyrimidine and purine nucleobases in carbonaceous chondrite meteorites has garnered much attention from both the popular press and the scientific community. Here, we discuss these findings in the context of nucleoside/nucleotide prebiotic chemistry. We consider that the main challenge of prebiotic nucleoside synthesis, that of nucleosidic bond formation, is not addressed by the identification nucleobases in meteorites. We further discuss issues of selection that arise from the observation that such meteorites contain both canonical and non-canonical nucleobases. In sum, we argue that, despite the major analytical achievement of identifying and characterizing nucleobases in meteorites, this observation does little to advance our understanding of the prebiotic chemistry that could have led to the first genetic molecules that gave rise to us.
Collapse
Affiliation(s)
- Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. .,NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA.
| | - Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, USA
| | - Karyn L Rogers
- Department of Earth and Environmental Sciences and Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Suzuki N. Understanding nonlinear composition dependency of enantioselectivity in chiral separation using mixed micelle. J Colloid Interface Sci 2022; 627:578-586. [PMID: 35878457 DOI: 10.1016/j.jcis.2022.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS Mixtures of chiral and achiral building blocks of supramolecules exhibit interesting cooperative phenomena, indicated by the nonlinear composition dependence of the chiral properties. However, the nonlinear composition dependence of the enantioselectivity of mixed micelles is not well understood. It was hypothesized that in-depth understanding can be achieved by carefully investigating the composition dependence of the properties. EXPERIMENTS In this work, the nonlinear composition dependence of the enantioselectivity was found for the mixed micelle of achiral and chiralN-acyl amino acids by micellar electrokinetic chromatography (MEKC). Capillary electrophoresis, circular dichroism (CD) spectroscopy, surface tension measurement, and fluorescence spectroscopy were used to investigate the mechanisms. FINDINGS Four mechanisms that could be causing the nonlinearity were investigated: (i) synergistic and antagonistic interactions of the surfactants; (ii) the chiral transfer from chiral to achiral surfactant; (iii) differences in the retention factor; and (iv) cooperative chiral recognition of the chiral and achiral surfactant. The investigation of the composition dependency of critical micelle concentration (CMC) and molar circular dichroism revealed that the effect of (i) and (ii) was negligibly small. The newly derived equations for (iii) and (iv) revealed that (iii) and (iv) have a major or medium effect on the nonlinear enantioselectivity.
Collapse
Affiliation(s)
- Nozomu Suzuki
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan; Department of Human Studies, Faculty of Arts and Humanities, Shikoku Gakuin University, 3-2-1 Bunkyo-cho, Zentsuji, Kagawa 765-8505, Japan.
| |
Collapse
|
6
|
Buhse T, Micheau JC. Spontaneous Emergence of Transient Chirality in Closed, Reversible Frank-like Deterministic Models. ORIGINS LIFE EVOL B 2022; 52:3-20. [PMID: 35680768 DOI: 10.1007/s11084-022-09621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
To explore abiotic theories related to the origin of biomolecular homochirality, we analyze two entirely reversible kinetic models composed of an enantioselective autocatalysis with limited stereoselectivity that is coupled to an enantiomeric mutual inhibition (Frank-like models). The two models differ in their autocatalytic steps in respect to the formation of monomer species in one model and of dimer species in the other. While fully reversible and running in a closed system, spontaneous mirror symmetry breaking (SMSB) gives rise to transient chiral excursions, even when starting from a strictly achiral situation. Before the SMSB, the two models differ in the main dissipative processes. At the SMSB, the entropy production rate reaches its maximum in both models. Here it is the enantioselective autocatalysis with retention of the winner enantiomer that dominates. During the terminal phase, the enantioselective autocatalysis with inversion prevails, while the entropy production rate vanishes, thus fulfilling the conditions of microscopic reversibility. SMSB does not occur if the autocatalytic rate constant is too strong or too weak. However, when the autocatalysis is relatively weak, the temporary chiral excursions last for long periods of time and could be the starting point of a cascade of asymmetric reactions. The realism of such Frank-like models is discussed from the viewpoint of their relevance to prebiotic chemistry.
Collapse
Affiliation(s)
- Thomas Buhse
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico.
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, Université Paul Sabatier, UMR au CNRS No. 5623, F-31062, Toulouse Cedex, France.
| |
Collapse
|
7
|
Magnetic circular dichroism in Archean atmosphere and asymmetric photolysis of biomolecules: enantiomeric excess of prebiotic sugar. J Biol Phys 2020; 46:283-295. [PMID: 32617795 DOI: 10.1007/s10867-020-09552-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022] Open
Abstract
In the terrestrial dipolar magnetic field, magnetic circular dichroism (MCD) of UV sunlight by paramagnetic O2 in an Archean atmosphere (mostly CO2 and N2) results in circular polarization anisotropy (~ 10-10). This is used to calculate enantiomeric excess (EE~10-13) of glyceraldehyde (3-carbon sugar) with a model that includes racemic production and asymmetric photolysis of its enantiomers. The sign and magnitude of enantiomeric excess (EE) vary with the Earth's latitude. Unlike random noise fluctuation in spontaneous mirror symmetry breaking (SMSB) models, the sign of EE is deterministic and constant over large areas of prebiotic Earth. The magnitude is several orders greater than the mean amplitude of stochastically fluctuating EE. MCD could provide the initial EE for growth of homochirality by asymmetric autocatalysis.
Collapse
|
8
|
Sandford SA, Nuevo M, Bera PP, Lee TJ. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chem Rev 2020; 120:4616-4659. [DOI: 10.1021/acs.chemrev.9b00560] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Scott A. Sandford
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
| | - Michel Nuevo
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
- BAER Institute, NASA Research Park, MS 18-4, Moffett Field, California 94035, United States
| | - Partha P. Bera
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
- BAER Institute, NASA Research Park, MS 18-4, Moffett Field, California 94035, United States
| | - Timothy J. Lee
- NASA Ames Research Center, MS 245-3, Moffett Field, California 94035, United States
| |
Collapse
|
9
|
Furukawa Y, Chikaraishi Y, Ohkouchi N, Ogawa NO, Glavin DP, Dworkin JP, Abe C, Nakamura T. Extraterrestrial ribose and other sugars in primitive meteorites. Proc Natl Acad Sci U S A 2019; 116:24440-24445. [PMID: 31740594 PMCID: PMC6900709 DOI: 10.1073/pnas.1907169116] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sugars are essential molecules for all terrestrial biota working in many biological processes. Ribose is particularly essential as a building block of RNA, which could have both stored information and catalyzed reactions in primitive life on Earth. Meteorites contain a number of organic compounds including key building blocks of life, i.e., amino acids, nucleobases, and phosphate. An amino acid has also been identified in a cometary sample. However, the presence of extraterrestrial bioimportant sugars remains unclear. We analyzed sugars in 3 carbonaceous chondrites and show evidence of extraterrestrial ribose and other bioessential sugars in primitive meteorites. The 13C-enriched stable carbon isotope compositions (δ13C vs.VPDB) of the detected sugars show that the sugars are of extraterrestrial origin. We also conducted a laboratory simulation experiment of a potential sugar formation reaction in space. The compositions of pentoses in meteorites and the composition of the products of the laboratory simulation suggest that meteoritic sugars were formed by formose-like processes. The mineral compositions of these meteorites further suggest the formation of these sugars both before and after the accretion of their parent asteroids. Meteorites were carriers of prebiotic organic molecules to the early Earth; thus, the detection of extraterrestrial sugars in meteorites establishes the existence of natural geological routes to make and preserve them as well as raising the possibility that extraterrestrial sugars contributed to forming functional biopolymers like RNA on the early Earth or other primitive worlds.
Collapse
Affiliation(s)
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, 060-0819 Sapporo, Japan
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Nanako O Ogawa
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Chiaki Abe
- Department of Earth Science, Tohoku University, 980-8578 Sendai, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, 980-8578 Sendai, Japan
| |
Collapse
|
10
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
11
|
Possible Roles of Amphiphilic Molecules in the Origin of Biological Homochirality. Symmetry (Basel) 2019. [DOI: 10.3390/sym11080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A review. The question of homochirality is an intriguing problem in the field of chemistry, and is deeply related to the origin of life. Though amphiphiles and their supramolecular assembly have attracted less attention compared to biomacromolecules such as RNA and proteins, the lipid world hypothesis sheds new light on the origin of life. This review describes how amphiphilic molecules are possibly involved in the scenario of homochirality. Some prebiotic conditions relevant to amphiphilic molecules will also be described. It could be said that the chiral properties of amphiphilic molecules have various interesting features such as compositional information, spontaneous formation, the ability to exchange components, fission and fusion, adsorption, and permeation. This review aims to clarify the roles of amphiphiles regarding homochirality, and to determine what kinds of physical properties of amphiphilic molecules could have played a role in the scenario of homochirality.
Collapse
|