1
|
Rezaeerod K, Heinzmann H, Torrence AV, Patel J, Forsythe JG. Qualitative Monitoring of Proto-Peptide Condensation by Differential FTIR Spectroscopy. ACS EARTH & SPACE CHEMISTRY 2024; 8:937-944. [PMID: 38774359 PMCID: PMC11103710 DOI: 10.1021/acsearthspacechem.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Condensation processes such as wet-dry cycling are thought to have played significant roles in the emergence of proto-peptides. Here, we describe a simple and low-cost method, differential Fourier transform infrared (FTIR) spectroscopy, for qualitative analysis of peptide condensation products in model primordial reactions. We optimize differential FTIR for depsipeptides and apply this method to investigate their polymerization in the presence of extraterrestrial dust simulants.
Collapse
Affiliation(s)
- Keon Rezaeerod
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Hanna Heinzmann
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
- Analytical
and Bioanalytical Chemistry, Aalen University, 73430 Aalen, Germany
| | - Alexis V. Torrence
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Jui Patel
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Jay G. Forsythe
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| |
Collapse
|
2
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
3
|
Castro JM, Montalbán MG, Martínez-Pérez N, Domene-López D, Pérez JM, Arrabal-Campos FM, Fernández I, Martín-Gullón I, García-Quesada JC. Thermoplastic starch/polyvinyl alcohol blends modification by citric acid-glycerol polyesters. Int J Biol Macromol 2023:125478. [PMID: 37336376 DOI: 10.1016/j.ijbiomac.2023.125478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Thermoplastic starch/polyvinyl alcohol (TPS/PVA) films have limitations for being used in long-term applications due to starch retrogradation. This leads to plasticizer migration, especially when low molecular weight plasticizers such as glycerol, are used. In this work, we employed mixtures of oligomers based on glycerol citrates with higher molecular weight than glycerol as plasticizers for potato-based TPS/PVA blends obtained by melt-mixing. This constitutes an alternative to reduce plasticizer migration while keeping high swelling degree, and to provide high mechanical performance. The novelty lies in the usage of these oligomers by melt-mixing technique, aspect not deeply explored previously and that represents the first step towards industrial scalability. Prior to the blending process, oligomers mixtures were prepared with different molar ratios of citric acid (0-40 mol%) and added them. This minimizes the undesirable hydrolysis effect of free carboxylic groups on starch chains. The results demonstrated that the migration of plasticizers in TPS/PVA blends decreased by up to 70 % when the citric acid content increased. This reduction was attributed to the higher molecular weight (the majority in the range 764-2060 Da) and the 3D structure of the oligomers compared to using raw glycerol. Furthermore, the films exhibited a 150 % increase in Young's modulus and tensile strength without a reduction in elongation at break, while maintaining a high gel content, due to a moderate crosslinking.
Collapse
Affiliation(s)
- Jennifer M Castro
- Chemical Engineering Department, University of Alicante, Apartado 99, 03080 Alicante, Spain; Institute of Chemical Process Engineering, University of Alicante, Apartado 99, 03080 Alicante, Spain
| | - Mercedes G Montalbán
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071 Murcia, Spain
| | - Noelia Martínez-Pérez
- Chemical Engineering Department, University of Alicante, Apartado 99, 03080 Alicante, Spain; Institute of Chemical Process Engineering, University of Alicante, Apartado 99, 03080 Alicante, Spain
| | - Daniel Domene-López
- Chemical Engineering Department, University of Alicante, Apartado 99, 03080 Alicante, Spain; Institute of Chemical Process Engineering, University of Alicante, Apartado 99, 03080 Alicante, Spain
| | - Juana M Pérez
- Department of Chemistry and Physics, CIAIMBITAL Center, University of Almeria, 04120 Almeria, Spain
| | | | - Ignacio Fernández
- Department of Chemistry and Physics, CIAIMBITAL Center, University of Almeria, 04120 Almeria, Spain
| | - Ignacio Martín-Gullón
- Chemical Engineering Department, University of Alicante, Apartado 99, 03080 Alicante, Spain; Institute of Chemical Process Engineering, University of Alicante, Apartado 99, 03080 Alicante, Spain.
| | - Juan C García-Quesada
- Chemical Engineering Department, University of Alicante, Apartado 99, 03080 Alicante, Spain; Institute of Chemical Process Engineering, University of Alicante, Apartado 99, 03080 Alicante, Spain
| |
Collapse
|
4
|
Saha A, Yi R, Fahrenbach AC, Wang A, Jia TZ. A Physicochemical Consideration of Prebiotic Microenvironments for Self-Assembly and Prebiotic Chemistry. Life (Basel) 2022; 12:1595. [PMID: 36295030 PMCID: PMC9604842 DOI: 10.3390/life12101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The origin of life on Earth required myriads of chemical and physical processes. These include the formation of the planet and its geological structures, the formation of the first primitive chemicals, reaction, and assembly of these primitive chemicals to form more complex or functional products and assemblies, and finally the formation of the first cells (or protocells) on early Earth, which eventually evolved into modern cells. Each of these processes presumably occurred within specific prebiotic reaction environments, which could have been diverse in physical and chemical properties. While there are resources that describe prebiotically plausible environments or nutrient availability, here, we attempt to aggregate the literature for the various physicochemical properties of different prebiotic reaction microenvironments on early Earth. We introduce a handful of properties that can be quantified through physical or chemical techniques. The values for these physicochemical properties, if they are known, are then presented for each reaction environment, giving the reader a sense of the environmental variability of such properties. Such a resource may be useful for prebiotic chemists to understand the range of conditions in each reaction environment, or to select the medium most applicable for their targeted reaction of interest for exploratory studies.
Collapse
Affiliation(s)
- Arpita Saha
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Albert C. Fahrenbach
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tony Z. Jia
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Afrin R, Chen C, Sarpa D, Sithamparam M, Yi R, Giri C, Mamajanov I, James Cleaves H, Chandru K, Jia TZ. The Effects of Dehydration Temperature and Monomer Chirality on Primitive Polyester Synthesis and Microdroplet Assembly. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rehana Afrin
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Chen Chen
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Davide Sarpa
- The University of Southampton University Rd, Highfield Southampton SO17 1BJ UK
| | - Mahendran Sithamparam
- Space Science Centre (ANGKASA) Institute of Climate Change National University of Malaysia UKM Bangi Selangor Darul Ehsan 43650 Malaysia
| | - Ruiqin Yi
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Chaitanya Giri
- Research and Information System for Developing Countries (RIS) Core IV‐B, Fourth Floor, India Habitat Centre, Lodhi Road New Delhi 110 003 India
| | - Irena Mamajanov
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - H. James Cleaves
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Blue Marble Space Institute of Science 600 1st Ave, Floor 1 Seattle WA 98104 USA
- Earth and Planets Laboratory Carnegie Institution of Washington 5241 Broad Branch Rd. Washington DC 20015 USA
| | - Kuhan Chandru
- Space Science Centre (ANGKASA) Institute of Climate Change National University of Malaysia UKM Bangi Selangor Darul Ehsan 43650 Malaysia
| | - Tony Z. Jia
- Earth‐Life Science Institute Tokyo Institute of Technology 2‐12‐1‐IE‐1 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Blue Marble Space Institute of Science 600 1st Ave, Floor 1 Seattle WA 98104 USA
| |
Collapse
|
6
|
Barge LM, Rodriguez LE, Weber JM, Theiling BP. Determining the "Biosignature Threshold" for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. ASTROBIOLOGY 2022; 22:481-493. [PMID: 34898272 DOI: 10.1089/ast.2021.0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
7
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
|
9
|
Rivera-Valentín EG, Filiberto J, Lynch KL, Mamajanov I, Lyons TW, Schulte M, Méndez A. Introduction-First Billion Years: Habitability. ASTROBIOLOGY 2021; 21:893-905. [PMID: 34406807 PMCID: PMC8403211 DOI: 10.1089/ast.2020.2314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/22/2020] [Indexed: 06/13/2023]
Abstract
The physical processes active during the first billion years (FBY) of Earth's history, such as accretion, differentiation, and impact cratering, provide constraints on the initial conditions that were conducive to the formation and establishment of life on Earth. This motivated the Lunar and Planetary Institute's FBY topical initiative, which was a four-part conference series intended to look at each of these physical processes to study the basic structure and composition of our Solar System that was set during the FBY. The FBY Habitability conference, held in September 2019, was the last in this series and was intended to synthesize the initiative; specifically, to further our understanding of the origins of life, planetary and environmental habitability, and the search for life beyond Earth. The conference included discussions of planetary habitability and the potential emergence of life on bodies within our Solar System, as well as extrasolar systems by applying our knowledge of the Solar System's FBY, and in particular Earth's early history. To introduce this Special Collection, which resulted from work discussed at the conference, we provide a review of the main themes and a synopsis of the FBY Habitability conference.
Collapse
Affiliation(s)
| | - Justin Filiberto
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Kennda L. Lynch
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA
| | - Mitch Schulte
- Planetary Science Division, NASA Headquarters, Washington, District of Columbia, USA
| | - Abel Méndez
- Planetary Habitability Laboratory, University of Puerto Rico Arecibo, Arecibo, Puerto Rico
| |
Collapse
|
10
|
Jia TZ, Bapat NV, Verma A, Mamajanov I, Cleaves HJ, Chandru K. Incorporation of Basic α-Hydroxy Acid Residues into Primitive Polyester Microdroplets for RNA Segregation. Biomacromolecules 2021; 22:1484-1493. [PMID: 33663210 DOI: 10.1021/acs.biomac.0c01697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids. However, the previously studied polyester microdroplets included limited αHA chemical diversity, which may not reflect the chemical diversity available in the primitive Earth environment. Here, we increased the chemical diversity of polyester microdroplet systems by combinatorially adding an αHA monomer with a basic side chain, 4-amino-2-hydroxybutyric acid (4a2h), which was incorporated with different ratios of other αHAs containing uncharged side chains to form combinatorial heteropolyesters via dehydration synthesis. Incorporation of 4a2h in the polymers resulted in the assembly of some polyester microdroplets able to segregate fluorescent RNA or potentially acquire intrinsic fluorescent character, suggesting that minor modifications of polyester composition can significantly impact the functional properties of primitive compartments. This study suggests one process by which primitive chemical systems can increase diversity of compartment "phenotype" through simple modifications in their chemical composition.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States
| | - Niraja V Bapat
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Ajay Verma
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States.,Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, United States
| | - Kuhan Chandru
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6 - Dejvice, Czech Republic.,Space Science Centre (ANGKASA), Institute of Climate Change, National University of Malaysia, UKM, Bangi, Selangor Darul Ehsan 43650, Malaysia
| |
Collapse
|
11
|
Jia TZ, Caudan M, Mamajanov I. Origin of Species before Origin of Life: The Role of Speciation in Chemical Evolution. Life (Basel) 2021; 11:154. [PMID: 33671365 PMCID: PMC7922636 DOI: 10.3390/life11020154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
Speciation, an evolutionary process by which new species form, is ultimately responsible for the incredible biodiversity that we observe on Earth every day. Such biodiversity is one of the critical features which contributes to the survivability of biospheres and modern life. While speciation and biodiversity have been amply studied in organismic evolution and modern life, it has not yet been applied to a great extent to understanding the evolutionary dynamics of primitive life. In particular, one unanswered question is at what point in the history of life did speciation as a phenomenon emerge in the first place. Here, we discuss the mechanisms by which speciation could have occurred before the origins of life in the context of chemical evolution. Specifically, we discuss that primitive compartments formed before the emergence of the last universal common ancestor (LUCA) could have provided a mechanism by which primitive chemical systems underwent speciation. In particular, we introduce a variety of primitive compartment structures, and associated functions, that may have plausibly been present on early Earth, followed by examples of both discriminate and indiscriminate speciation affected by primitive modes of compartmentalization. Finally, we discuss modern technologies, in particular, droplet microfluidics, that can be applied to studying speciation phenomena in the laboratory over short timescales. We hope that this discussion highlights the current areas of need in further studies on primitive speciation phenomena while simultaneously proposing directions as important areas of study to the origins of life.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, WA 98154, USA
| | - Melina Caudan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| |
Collapse
|
12
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
13
|
Protoenzymes: The Case of Hyperbranched Polymer-Scaffolded ZnS Nanocrystals. Life (Basel) 2020; 10:life10080150. [PMID: 32823487 PMCID: PMC7460482 DOI: 10.3390/life10080150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022] Open
Abstract
Enzymes are biological catalysts that are comprised of small-molecule, metal, or cluster catalysts augmented by biopolymeric scaffolds. It is conceivable that early in chemical evolution, ancestral enzymes opted for simpler, easier to assemble scaffolds. Herein, we describe such possible protoenzymes: hyperbranched polymer-scaffolded metal-sulfide nanocrystals. Hyperbranched polyethyleneimine (HyPEI) and glycerol citrate polymer-supported ZnS nanocrystals (NCs) are formed in a simple process. Transmission electron microscopy (TEM) analyses of HyPEI-supported NCs reveal spherical particles with an average size of 10 nm that undergo only a modest aggregation over a 14-day incubation. The polymer-supported ZnS NCs are shown to possess a high photocatalytic activity in an eosin B photodegradation assay, making them an attractive model for the study of the origin of life under the “Zn world” theory dominated by a photocatalytic proto-metabolic redox reaction network. The catalyst, however, could be easily adapted to apply broadly to different protoenzymatic systems.
Collapse
|
14
|
Yi R, Tran QP, Ali S, Yoda I, Adam ZR, Cleaves HJ, Fahrenbach AC. A continuous reaction network that produces RNA precursors. Proc Natl Acad Sci U S A 2020; 117:13267-13274. [PMID: 32487725 PMCID: PMC7306801 DOI: 10.1073/pnas.1922139117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Continuous reaction networks, which do not rely on purification or timely additions of reagents, serve as models for chemical evolution and have been demonstrated for compounds thought to have played important roles for the origins of life such as amino acids, hydroxy acids, and sugars. Step-by-step chemical protocols for ribonucleotide synthesis are known, but demonstrating their synthesis in the context of continuous reaction networks remains a major challenge. Herein, compounds proposed to be important for prebiotic RNA synthesis, including glycolaldehyde, cyanamide, 2-aminooxazole, and 2-aminoimidazole, are generated from a continuous reaction network, starting from an aqueous mixture of NaCl, NH4Cl, phosphate, and HCN as the only carbon source. No well-timed addition of any other reagents is required. The reaction network is driven by a combination of γ radiolysis and dry-down. γ Radiolysis results in a complex mixture of organics, including the glycolaldehyde-derived glyceronitrile and cyanamide. This mixture is then dried down, generating free glycolaldehyde that then reacts with cyanamide/NH3 to furnish a combination of 2-aminooxazole and 2-aminoimidazole. This continuous reaction network models how precursors for generating RNA and other classes of compounds may arise spontaneously from a complex mixture that originates from simple reagents.
Collapse
Affiliation(s)
- Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Quoc Phuong Tran
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarfaraz Ali
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Isao Yoda
- Co-60 Radiation Facility, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Zachary R Adam
- Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721
- Blue Marble Space Institute of Science, Seattle, WA 98154
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA 98154
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, NJ 08540
| | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
15
|
Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry. Life (Basel) 2020; 10:life10010006. [PMID: 31963928 PMCID: PMC7175156 DOI: 10.3390/life10010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
A variety of organic chemicals were likely available on prebiotic Earth. These derived from diverse processes including atmospheric and geochemical synthesis and extraterrestrial input, and were delivered to environments including oceans, lakes, and subaerial hot springs. Prebiotic chemistry generates both molecules used by modern organisms, such as proteinaceous amino acids, as well as many molecule types not used in biochemistry. As prebiotic chemical diversity was likely high, and the core of biochemistry uses a rather small set of common building blocks, the majority of prebiotically available organic compounds may not have been those used in modern biochemistry. Chemical evolution was unlikely to have been able to discriminate which molecules would eventually be used in biology, and instead, interactions among compounds were governed simply by abundance and chemical reactivity. Previous work has shown that likely prebiotically available α-hydroxy acids can combinatorially polymerize into polyesters that self-assemble to create new phases which are able to compartmentalize other molecule types. The unexpectedly rich complexity of hydroxy acid chemistry and the likely enormous structural diversity of prebiotic organic chemistry suggests chemical evolution could have been heavily influenced by molecules not used in contemporary biochemistry, and that there is a considerable amount of prebiotic chemistry which remains unexplored.
Collapse
|