1
|
Muchammad M, Tauviqirrahman M, Ammarullah MI, Iqbal M, Setiyana B, Jamari J. Performance of textured dual mobility total hip prosthesis with a concave dimple during Muslim prayer movements. Sci Rep 2024; 14:916. [PMID: 38195665 PMCID: PMC10776789 DOI: 10.1038/s41598-023-50887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The single mobility bearing as a previous bearing design of total hip prosthesis has severe mobility constraints that can result in dislocation during Muslim (people who follow the Islam as religion) prayer movements, specifically shalat that requires intense movement. There are five intense movements (i.e., bowing, prostration, sitting, transition from standing to prostration, and final sitting) during Muslim prayer that may generate an impingement problem for patients with total hip prosthesis. In this work, textured dual mobility total hip prosthesis with two textured cases (i.e., textured femoral head and textured inner liner) are presented and their performances are numerically evaluated against untextured surface model during Muslim prayer movement. The concave dimple design is chosen for surface texturing, while for simulating femoral head materials, SS 316L and CoCrMo is choosen. To represent the real condition, three-dimensional computational fluid dynamics (CFD) coupled with two-way fluid-structure interaction (FSI) methods are employed to analyze elastohydrodynamic lubrication problem with non-Newtonian synovial fluid model. The main aim of the present study is to investigate the tribological performance on dual mobility total hip prosthesis with applied textured surface with concave dimple in femoral head and inner liner surface under Muslim prayer movements. It is found that applying surface texturing has a beneficial effect on the lubrication performance for some intense movements. The textured femoral head model performs better than textured inner liner model and untextured model (both femoral head and inner liner). The numerical results also indicate superior performance of CoCrMo femoral head compared to SS 316L femoral head. These findings can be used as a reference for biomedical engineers and orthopedic surgeons in designing and choosing suitable total hip prosthesis for Muslims makes they can carry out Muslim prayer movements like humans in general who have normal hip joints.
Collapse
Affiliation(s)
- M Muchammad
- Laboratory for Engineering Design and Tribology, Department of Mechanical Engineering, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia.
| | - Mohammad Tauviqirrahman
- Laboratory for Engineering Design and Tribology, Department of Mechanical Engineering, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
| | - Muhammad Imam Ammarullah
- Laboratory for Engineering Design and Tribology, Department of Mechanical Engineering, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
- Department of Mechanics and Aerospace Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung, 40153, West Java, Indonesia
| | - Muhammad Iqbal
- Laboratory for Engineering Design and Tribology, Department of Mechanical Engineering, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
| | - Budi Setiyana
- Laboratory for Engineering Design and Tribology, Department of Mechanical Engineering, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
- Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Postbus 217, 7500 AE, Enschede, The Netherlands
| | - J Jamari
- Laboratory for Engineering Design and Tribology, Department of Mechanical Engineering, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
| |
Collapse
|