1
|
Cihan E, Dietzel D, Jany BR, Schirmeisen A. Effect of Amorphous-Crystalline Phase Transition on Superlubric Sliding. PHYSICAL REVIEW LETTERS 2023; 130:126205. [PMID: 37027841 DOI: 10.1103/physrevlett.130.126205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/26/2023] [Indexed: 06/19/2023]
Abstract
Structural superlubricity describes the state of greatly reduced friction between incommensurate atomically flat surfaces. Theory predicts that, in the superlubric state, the remaining friction sensitively depends on the exact structural configuration. In particular the friction of amorphous and crystalline structures for, otherwise, identical interfaces should be markedly different. Here, we measure friction of antimony nanoparticles on graphite as a function of temperature between 300 and 750 K. We observe a characteristic change of friction when passing the amorphous-crystalline phase transition above 420 K, which shows irreversibility upon cooling. The friction data is modeled with a combination of an area scaling law and a Prandtl-Tomlinson type temperature activation. We find that the characteristic scaling factor γ, which is a fingerprint of the structural state of the interface, is reduced by 20% when passing the phase transition. This validates the concept that structural superlubricity is determined by the effectiveness of atomic force canceling processes.
Collapse
Affiliation(s)
- Ebru Cihan
- Institute of Applied Physics, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TU Dresden, 01069 Dresden, Germany
| | - Dirk Dietzel
- Institute of Applied Physics, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
- Center for Materials Research, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Benedykt R Jany
- Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30348 Krakow, Poland
| | - André Schirmeisen
- Institute of Applied Physics, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
- Center for Materials Research, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Gao H, Müser MH. Structural lubricity of physisorbed gold clusters on graphite and its breakdown: Role of boundary conditions and contact lines. Front Chem 2022; 10:935008. [PMID: 36118319 PMCID: PMC9470919 DOI: 10.3389/fchem.2022.935008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
The sliding motion of gold slabs adsorbed on a graphite substrate is simulated using molecular dynamics. The central quantity of interest is the mean lateral force, that is, the kinetic friction rather than the maximum lateral forces, which correlates with the static friction. For most setups, we find Stokesian damping to resist sliding. However, velocity-insensitive (Coulomb) friction is observed for finite-width slabs sliding parallel to the armchair direction if the bottom-most layer of the three graphite layers is kept at zero stress rather than at zero displacement. Although the resulting kinetic friction remains much below the noise produced by the erratic fluctuations of (conservative) forces typical for structurally lubric contacts, the nature of the instabilities leading to Coulomb friction could be characterized as quasi-discontinuous dynamics of the Moiré patterns formed by the normal displacements near a propagating contact line. It appears that the interaction of graphite with the second gold layer is responsible for the symmetry break occurring at the interface when a contact line moves parallel to the armchair rather than to the zigzag direction.
Collapse
|
3
|
Qu C, Wang K, Wang J, Gongyang Y, Carpick RW, Urbakh M, Zheng Q. Origin of Friction in Superlubric Graphite Contacts. PHYSICAL REVIEW LETTERS 2020; 125:126102. [PMID: 33016762 DOI: 10.1103/physrevlett.125.126102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
More than thirty years ago, it was theoretically predicted that friction for incommensurate contacts between atomically smooth, infinite, crystalline materials (e.g., graphite, MoS_{2}) is vanishing in the low speed limit, and this corresponding state was called structural superlubricity (SSL). However, experimental validation of this prediction has met challenges, since real contacts always have a finite size, and the overall friction arises not only from the atoms located within the contact area, but also from those at the contact edges which can contribute a finite amount of friction even when the incommensurate area does not. Here, we report, using a novel method, the decoupling of these contributions for the first time. The results obtained from nanoscale to microscale incommensurate contacts of graphite under ambient conditions verify that the average frictional contribution of an inner atom is no more than 10^{-4} that of an atom at the edge. Correspondingly, the total friction force is dominated by friction between the contact edges for contacts up to 10 μm in lateral size. We discuss the physical mechanisms of friction observed in SSL contacts, and provide guidelines for the rational design of large-scale SSL contacts.
Collapse
Affiliation(s)
- Cangyu Qu
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kunqi Wang
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Tribology & Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jin Wang
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yujie Gongyang
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Robert W Carpick
- Mechanical Engineering and Applied Mechanics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19147, USA
| | - Michael Urbakh
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Quanshui Zheng
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Tribology & Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Atomic Force Microscopy and Raman Microspectroscopy Investigations of the Leaching of Chalcopyrite (112) Surface. MINERALS 2020. [DOI: 10.3390/min10060485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine the reactivity of the chalcopyrite (112) surface under industrially relevant leaching conditions. Leaching of the chalcopyrite (112) surface was carried out at approximately pH 1 and in the presence of 0.01 M ferric or ferrous. The atomic force microscopy (AFM) and Raman microspectroscopy analyses suggested that the chalcopyrite (112) surface was relatively inert, with no formation of elemental sulfur observed over 42 days of leaching. In addition, it was found that the distribution of Fe-S and Cu-S bonds was always negatively correlated, as revealed by Raman analysis. This suggested that the breakage of the Fe-S and Cu-S bonds did not occur concurrently at a specific reaction site. The rate of variation of surface roughness, as reflected by AFM data, also suggested that leaching of the chalcopyrite (112) surface in the ferric or ferrous solution medium likely occurred more rapidly in the initial stage (fewer than seven days) than in the later stage (after seven days).
Collapse
|