1
|
Beta vulgaris subsp. maritima: A Valuable Food with High Added Health Benefits. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was conducted to evaluate a natural extract, obtained from the Beta vulgaris plant, for its phytochemical composition and its beneficial health effects. Therefore, total phenolic and flavonoid contents, as well as identification and quantification of phenolic compounds by HPLC, were assessed in leaves’ extract. Moreover, antioxidant activities were investigated using free radical scavenging tests, (ABTS+ and DPPH+) and reducing power assay (FRAP) as well as ferrous ions’ (Fe2+) chelating activity. The Antiglycation effect was also evaluated, using the BSA-fructose model, and the antidiabetic effect was determined by inhibition of α-amylase and α-glucosidase enzymes. Additionally, the in vitro antitumor effect was quantified using the MTT assay, and the antibacterial activity was evaluated using the agar disc diffusion and broth microdilution methods. Both aqueous and methanolic extracts exhibited potential antioxidant capacity with a higher effect for the methanolic extract. Furthermore, the in vitro antitumor activity of the methanolic extracts exhibited potent cytotoxic effects against two breast cancer cell lines, MDA-MB-468 and MCF-7. Moreover, Beta vulgaris extracts inhibit not only α-amylase and α-glucosidase, but also advanced glycation end-products’ (AGEs) formation, which would prevent diabetes’ complications. Beta vulgaris methanolic extract revealed also a high antibacterial effect against Proteus mirabilis and Bacillus subtilis. Taken together, these results revealed that Beta vulgaris leaves’ extracts constitute a valuable food and natural source of bioactive molecules that could be used for the development of new, natural drugs against cancer and diabetes.
Collapse
|
2
|
Boumi S, Moghimirad J, Amanlou M, Ostad SN, Tavajohi S, Amini M. Synthesis, Evaluation of Biological Activity, Docking and Molecular Dynamic Studies of Pyrimidine Derivatives. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200706005824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microtubule is composed of αβ-tubulin heterodimers and is an attractive target for the
design of anticancer drugs. Over the years, various compounds have been developed and their effect on
tubulin polymerization has been studied. Despite great efforts to make an effective drug, no drug has
been introduced which inhibit colchicine binding site. In the current work, a series of pyrimidine derivatives
were designed and synthesized. Furthermore, their cytotoxic activities were evaluated and molecular
docking studies were performed. Twenty compounds of pyrimidine were synthesized in 2 different
groups. In the first group, 4,6-diaryl pyrimidine was connected to the third aryl group via thiomethylene
spacer. In the second group, this linker was substituted by S-CH2-triazole moiety. The cytotoxic
activity of these compounds was evaluated against 4 different cell lines (HT-29, MCF-7, T47D,
NIH3T3). Compounds 6d, 6m, 6p showed potent cytotoxic activity against MCF7 cancerous cell lines.
Between these compounds, compound 6p did not show cytotoxic activity against NIH- 3T3 (normal
cell) cell line. Docking studies show that these compounds occupy colchicine binding site in tubulin
protein and probably their anticancer mechanism is inhibition of tubulin polymerization. Altogether,
with respect to obtained results, it is attractive and beneficial to further investigation on pyrimidine
scaffold as antimitotic agents. Attention to the selectivity index of 6p on MCF7 cell line could be valuable
in design new chemical agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shahin Boumi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran,Iran
| | - Jafar Moghimirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran,Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran,Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran,Iran
| | - Shohreh Tavajohi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran,Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran,Iran
| |
Collapse
|
3
|
Moghadam ES, Saravani F, Hamel E, Shahsavari Z, Alipour M, Hosseinkhani S, Ostad S, Amini M. Design, Synthesis and In Vitro Anti-Cancer Evaluation of Novel Derivatives of 2-(2-Methyl-1,5-diaryl-1H-pyrrol-3-yl)-2-oxo-N-(pyridin-3- yl)acetamide. Med Chem 2020; 16:340-349. [PMID: 31032753 DOI: 10.2174/1573406415666190425153717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. METHODS Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. RESULTS One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. CONCLUSION Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.
Collapse
Affiliation(s)
- Ebrahim S Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Saravani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Alipour
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115, Iran.,Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saman Hosseinkhani
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115, Iran.,Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115, Iran
| | - Seyednasser Ostad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
4
|
Nourmahammadi J, Moghadam ES, Shahsavari Z, Amini M. Design, Synthesis and Biological Evaluation of Novel Diaryl Pyrazole Derivatives as Anticancer Agents. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190514090158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is one of the major causes of mortality all around the world. Globally, nearly 1 in 6
deaths is due to cancer. Researchers are trying to synthesize new anticancer agents. Previous studies
demonstrated that some pyrazole derivatives could be considered as potential anticancer agents. Herein,
ten novel derivatives of 1,5-diarylpyrazole were synthesized in four step reactions and cytotoxic activity
was investigated by MTT cell viability assay. All of the compounds were characterized by 1H
NMR and 13C NMR and their purity was confirmed by elemental analysis. The cytotoxicity was determined
against three cancerous cell lines (HT-29, U87MG and MDA-MB 468) and AGO1522 as a
normal cell line. Compound 5a showed the best cytotoxic activity on cancerous cell lines in comparison
to paclitaxel. Annexin V/ PI staining assay also showed that compounds 5a and 5i would lead to
significant apoptosis induction in MDA-MB 486 cell line.
Collapse
Affiliation(s)
- Jalal Nourmahammadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Shahsavari
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
5
|
Synthesis and anti-breast cancer activity of novel indibulin related diarylpyrrole derivatives. ACTA ACUST UNITED AC 2019; 27:179-189. [PMID: 30891679 DOI: 10.1007/s40199-019-00260-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND During recent years, a number of anti-tubulin agents were introduced for treatment of diverse types of cancer. Despite their potential in the treatment of cancer, drug resistance and adverse toxicity, such as peripheral neuropathy, are some of the negative effects of anti-tubulin agents. Among anti-tubulin agents, indibulin was found to cause minimal peripheral neuropathy. Thus far, however, indibulin has not entered clinical usage, caused in part by its poor aqueous solubility and other developmental problems in preclinical evaluation. OBJECTIVES With respect to need for finding potent and safe anticancer agents, in our current research work, we synthesized several indibulin-related diarylpyrrole derivatives and investigated their anti-cancer activity. METHODS Cell cultur studies were perfomred using the MTT cell viability assay on the breast cancer cell lines MCF-7, T47-D, and MDA-MB231 and also NIH-3 T3 cells as representative of a normal cell line. The activity of some of the synthesized compounds for tubulin interaction was studied using colchicine binding and tubulin polymerization assays. The annexin V-FITC/PI method and flow cytometric analysis were used for studying apoptosis induction and cell cycle distribution. RESULTS AND CONCLUSION Two of the synthesized compounds, 4f and 4 g, showed high activity on the MDA-MB231 cell line (IC50 = 11.82 and 13.33 μM, (respectively) and low toxicity on the normal fibroblast cells (IC50 > 100 μM). All of the tested compounds were more potent on T47-D cancer cells and less toxic on NIH-3 T3 normal cells in comparison to reference compound, indibulin. The tubulin polymerization inhibition assay and [3H]colchicine binding assay showed that the main mechanism of cell death by the potent synthesized compounds was not related to an interaction with tubulin. In the annexin V/PI staining assay, the induction of apoptosis in the MCF-7 and MDA-MB231 cell lines was observed. Cell cycle analysis illustrated an increased percentage of sub-G-1 cells in the MDA-MB231 cell line as a further indication of cell death through induction of apoptosis. Graphical abstract Novel Indibulin analogous as anti-breast cancer agents.
Collapse
|