1
|
Li J, Usman M, Arslan M, Gamal El-Din M. Molecular and microbial insights towards anaerobic biodegradation of anionic polyacrylamide in oil sands tailings. WATER RESEARCH 2024; 258:121757. [PMID: 38768520 DOI: 10.1016/j.watres.2024.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Anionic polyacrylamide (A-PAM) is widely used as a flocculant in the management of oil sands tailings. Nevertheless, apprehensions arise regarding its potential biodegradation and environmental consequences within the context of oil sands tailings. Consequently, it is imperative to delve into the anaerobic biodegradation of A-PAM in oil sands tailings to gain a comprehensive understanding of its influence on tailings water quality. This work explored the dynamics of A-PAM biodegradation across concentrations: 50, 100, 250, 500, 1000, and 2000 mg/kg TS. The results showed a significant decrease in A-PAM concentration and molecular weight at lower concentrations (50 and 100 mg/kg TS) compared to higher ones, suggesting enhanced degradation efficiency. Likewise, the organic transformation and methane production exhibited dependency on A-PAM concentrations. The peak concentrations observed were 20.0 mg/L for volatile fatty acids (VFAs), 0.07 mg/L for acrylamide (AMD), and 8.9 mL for methane yield, with these maxima being recorded at 50 mg/kg TS. The biodegradation efficiency diminishes at higher concentrations of A-PAM, potentially due to the inhibitory effects of polyacrylic acid accumulation. A-PAM biodegradation under anaerobic condition did not contribute to acute toxicity or genotoxicity. SEM-EDS, FT-IR and XRD analyses further revealed that higher concentrations of A-PAM inhibited the biodegradation by altering floc structure and composition, thereby restricting the microbial activity. Major microorganisms, including Smithella, Candidatus_Cloacimonas, W5, XBB1006, and DMER64 were identified, highlighting A-PAM's dual role as a source of carbon and nitrogen under anaerobic conditions. The above findings from this research not only significantly advance understanding of A-PAM's environmental behavior but also contribute to the effective management practices in oil sands tailings.
Collapse
Affiliation(s)
- Jia Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
2
|
Bhuyan MM, Jeong JH. Synthesis and Characterization of Gamma Radiation Induced Diallyldimethylammonium Chloride-Acrylic Acid-(3-Acrylamidopropyl) Trimethylammonium Chloride Superabsorbent Hydrogel. Gels 2023; 9:gels9020159. [PMID: 36826329 PMCID: PMC9956196 DOI: 10.3390/gels9020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
The gamma radiation technique is simple and time-saving for the synthesis of pure hydrogels. The present work focuses on synthesizing and characterizing Diallyldimethylammonium Chloride-Acrylic acid-(3-Acrylamidopropyl) trimethylammonium Chloride (DADMAC-AAc-APTAC) superabsorbent hydrogels. The hydrogels were synthesized by applying gamma radiation of different doses (2 kGy to 30 kGy) to two different compositions of monomers. The equilibrium swelling was found to be 33483.48% of dried gel for a 1:0.5:1 composition ratio of monomers at a 2 kGy radiation dose. Therefore, on the basis of equilibrium swelling, 2 kGy is the optimum radiation dose for synthesizing the hydrogel. Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and X-ray diffraction (XRD) characterization techniques were used to analyze and confirm the structure of the hydrogel. Thermogravimetric analysis (TGA) and Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) clearly showed the thermal stability and surface morphology of the gel. Therefore, it can be concluded that hydrogels can be used in metal adsorption, drug delivery, and other fields of study.
Collapse
Affiliation(s)
- Md Murshed Bhuyan
- Research Institute of Environment for Sustainability, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Thermal-Fluid Energy Machine Lab., Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Correspondence: (M.M.B.); (J.-H.J.); Tel./Fax: +82-42-750-5654 (J.-H.J.)
| | - Jae-Ho Jeong
- Thermal-Fluid Energy Machine Lab., Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Correspondence: (M.M.B.); (J.-H.J.); Tel./Fax: +82-42-750-5654 (J.-H.J.)
| |
Collapse
|
3
|
Chi N, Liu J, Lei M, Feng L. Preparation of amphiphilic cationic polyacrylamide (CPAM) with cationic microblock structure to enhance printing and dyeing sludge dewatering and condition performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13079-13093. [PMID: 36125686 DOI: 10.1007/s11356-022-23067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Flocculation is an important pretreatment technology for sludge dewatering, and the flocculant's performance is the key factor to determine the flocculation effect. Cationic polyacrylamide (CPAM) is commonly used in dewatering and conditioning of printing and dyeing sludge (PD sludge), and the research of high-efficiency flocculant is a hot spot in the field of PD sludge dewatering. Hydrophobic butylacrylate (BA) and (2-(Methacryloyloxy)ethyl) trimethylammonium chloride (DMC) were introduced into the copolymer, and amphiphilic (hydrophilic/lipophilic) CPAM, namely TP-ADB, with microblock structure was synthesized by ultrasonic initiated template copolymerization in this study. The functional group composition of TP-ADB was determined by FTIR and 1H NMR. Thermogravimetric analysis (TGA) showed that TP-ADB had good thermal stability. The amphiphilic rheological properties of the copolymer were measured according to the apparent viscosity. In addition, 1H NMR and TGA results confirmed the existence of microblock structure in the copolymer chain. The polymerization mechanism was discussed by association coefficient (KM) measurement. The results showed that the template copolymerization initiated by ultrasonic followed the law of free radical copolymerization. The pre-adsorption of DMC with sodium polyacrylate template (NaPAA) before the reaction confirmed that the template polymerization accorded with ZIP I mechanism. The cationic microblock structure and hydrophobic association of TP-ADB promoted the dewatering performance of PD sludge (FCMC = 72.9%, turbidity removal rate = 98.9%, SRF = 4.2 × 1012 m·kg-1). Hydrophobic association enhanced the bridging, sweeping, and net catching effect, and promoted the growth of floc size and fractal dimension. Cationic microblock structure can produce compact floc with higher mechanical strength by enhancing electrical neutralization and electrical patching. As a skeleton, the compressibility of filter cake was reduced and the permeability was enhanced, and the PD sludge dewatering effect was significantly improved.
Collapse
Affiliation(s)
- Nianping Chi
- School of Municipal and Geomatics Engineering, Hunan City University, Hunan Province Engineering & Technology Research Center for Rural Water Quality Safety, Hunan, 413000, Yiyang, People's Republic of China
| | - Jiajun Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Minghua Lei
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Hyrycz M, Ochowiak M, Krupińska A, Włodarczak S, Matuszak M. A review of flocculants as an efficient method for increasing the efficiency of municipal sludge dewatering: Mechanisms, performances, influencing factors and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153328. [PMID: 35074381 DOI: 10.1016/j.scitotenv.2022.153328] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Mechanical sludge dewatering is one of the stages of the municipal wastewater treatment process, which allows the amount of generated sludge and the cost of its transport and management to be reduced. Achieving a high degree of dewatering is possible thanks to the use of flocculation technology. The article presents issues related to the theory of flocculation, sewage sludge, and its dewatering. The main mechanisms of flocculation, the kinetics of the process, the division of flocculants, and flocculation in dual systems are discussed. The influence of particular parameters on the efficiency of flocculation and the dewatering of sewage sludge was analyed. The assessed parameters are: pH, the presence of salt, the mixing process, the structure and ionicity of chains, and the dose. The results of experimental studies on the dewatering of various types of sludge were compared. The literature review included in the paper helps to better understand the process of flocculation and sludge dewatering, and presents the progress to date and the possible directions for further development in this field.
Collapse
Affiliation(s)
- Michał Hyrycz
- Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland.
| | - Marek Ochowiak
- Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland.
| | - Andżelika Krupińska
- Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland.
| | - Sylwia Włodarczak
- Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland.
| | - Magdalena Matuszak
- Department of Chemical Engineering and Equipment, Poznan University of Technology, 60-965 Poznan, Poland.
| |
Collapse
|
5
|
Maćczak P, Kaczmarek H, Ziegler-Borowska M, Węgrzynowska-Drzymalska K, Burkowska-But A. The Use of Chitosan and Starch-Based Flocculants for Filter Backwash Water Treatment. MATERIALS 2022; 15:ma15031056. [PMID: 35161001 PMCID: PMC8838026 DOI: 10.3390/ma15031056] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Inorganic aluminum or iron salts supported with synthetic polymers are commonly used to eradicate colloidal particles from water in coagulation and flocculation processes. Nevertheless, these agents have several disadvantages, such as large volumes of sludge produced or environmental toxicity. Recently biodegradable polymers have been suggested as eco-friendly flocculants for water treatment. This study aimed to investigate the possibilities of using starch and chitosan and their oxidized derivatives as flocculants for filter backwash water treatment. Dialdehyde starch (DST) and dialdehyde chitosan (DCT) were synthesized by periodate oxidization of natural starch from corn and low molecular weight chitosan. The obtained materials have been characterized with scanning electron microscopy (SEM), ATR-FTIR spectroscopy, and thermogravimetric analysis (TGA). Furthermore, we studied the flocculation properties of polysaccharide flocculants in a series of jar tests. The effectiveness of chitosan and starched-based flocculants was compared to synthetic polymers commonly used to treat iron ions-rich filter backwash water. The environmental aspects of these chemicals, particularly the biodegradability of post-flocculation residues, were also addressed. It was found that oxidized starch and chitosan derivatives can be used as ecological flocculating materials to treat potable water or sludge.
Collapse
Affiliation(s)
- Piotr Maćczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (M.Z.-B.); (K.W.-D.)
- Water Supply and Sewage Enterprise LLC, Przemysłowa 4, 99-300 Kutno, Poland
- Correspondence: (P.M.); (H.K.)
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (M.Z.-B.); (K.W.-D.)
- Correspondence: (P.M.); (H.K.)
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (M.Z.-B.); (K.W.-D.)
| | | | - Aleksandra Burkowska-But
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
6
|
Song Z, Gao H, Zhang W, Wang D. Influence of flocculation conditioning on environmental risk of heavy metals in dredged sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113313. [PMID: 34311249 DOI: 10.1016/j.jenvman.2021.113313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
This study comprehensively analyzes the environmental risk of heavy metals (HMs) in the dewatering process of dredged sediment. First, the toxicity leaching capacity, total content, and chemical speciation of the HMs (As, Cd, Co, Cr, Cu, Hg, Mo, Pb, Sb, Sr, Tl, Zn) in dewatered sediment were determined using toxicity characteristic leaching procedure and modified Community Bureau of Reference sequential extraction procedure. The ecotoxicity and environmental risk of the HMs were then evaluated based on sediment quality guidelines, geo-accumulation index, enrichment factor, potential ecological risk, and risk assessment code. The results showed that flocculants reduced the ecological risk of Hg and Mo in sediment, and promoted the transformation of Mo, Sb, and Tl from the biologically active fraction to the more stable fraction. The transformation percentages of Mo, Sb, and Ti were 45.15%, 50.59% and 76.44%, respectively, after chitosan (CTS) treatment, and 64.55%, 31.75% and 99.90%, respectively, after cationic polyacrylamide (CPAM) treatment. CTS reduced the potential risks of bioavailable As, Cr, Cu, Mo, Sb, and Hg by (at most) 46.28%, 45.92%, 43.01%, 100.00%, 44.45%, and 39.69%, respectively, whereas CPAM decreased the ecotoxicity of bioavailable Cd, Co, and Zn by (at most) 27.49%, 16.10%, and 20.89%, respectively. According to the result of principal component analysis, the main factors affecting the environmental risk of HMs in sediment dewatering were nitrogenous organic compounds (mainly protein substances), fulvic acid substances, and minerals. The most essential factor was nitrogenous organic compounds, which accounted for 89.52% of the total variance. Chemical speciation was apparently more suitable for environmental risk assessment of sediment dewatering than total content. This study provides an important basis for controlling the environmental risk of HMs caused by sediment dewatering.
Collapse
Affiliation(s)
- Zhenzhen Song
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongyu Gao
- Institute for Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Weijun Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dongsheng Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
7
|
Tang Q, Chen W, Dai X, Liu Y, Liu H, Fan L, Luo H, Ji L, Zhang K. Exploring the perspective of nano-TiO 2 in hydrophobic modified cationic flocculant preparation: Reaction kinetics and emulsified oil removal performance. CHEMOSPHERE 2021; 263:128066. [PMID: 33297071 DOI: 10.1016/j.chemosphere.2020.128066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
To reduce the polymerization difficulty of hydrophobic modified copolymers, a hydrophobic modified cationic flocculant was fabricated using nano-TiO2 as initiator with acrylamide (AM) and methyl acryloxyethyl dimethyl benzyl ammonium chloride (DML) as monomers, and named it PAD. The copolymers were characterized by scanning electron microscopy (SEM), nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TG). Results verified that PAD was synthesized successfully and nano-TiO2 was more conducive to DML grafting than traditional photo-initiators. Reaction kinetics demonstrated that the polymerization process was a typical precipitation polymerization initiated by free radicals. Flocculation performance of flocculant on simulated emulsified oil was evaluated and optimized. The simulation results indicated that the flocculation performance of PAD was superior to traditional flocculant, which was attributed to the higher content of DML in PAD. The maximum removal rate of emulsified oil could reach 92.10%, and the corresponding turbidity removal rate was 93.54%. Further, the mechanism studies suggested that the removal of emulsified oil was realized by the synergistic effects of electric neutralization, demulsification, hydrophobic association and adsorption bridging. The findings of this study showed that nano-TiO2 exhibited a promising prospect in the field of polymer-initiated polymerization.
Collapse
Affiliation(s)
- Qian Tang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China.
| | - Xinning Dai
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Yuchen Liu
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Hong Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Liangqian Fan
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China
| | - Lin Ji
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China
| |
Collapse
|
8
|
Chen Y, Feng L, Liu B, Peng J, Chen Y, Xu C, Ren J. Study of microwave‐template initiated copolymerization peculiarity and evaluation on the coal floc distinctive behavior and flocculation performance. J Appl Polym Sci 2020. [DOI: 10.1002/app.49519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yao Chen
- School of River and Ocean EngineeringChongqing Jiaotong University Chongqing China
| | - Li Feng
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Bingzhi Liu
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Junlin Peng
- School of Mechanical Engineering, Xiangtan University Xiangtan Hunan China
| | - Yuning Chen
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Chuang Xu
- School of Civil and Transportation EngineeringGuangdong University of Technology, Higher Education Mega Center Guangzhou Guangdong China
| | - Jie Ren
- Key Laboratory of the Three Gorges Reservoir Region's Eco‐Environment, Ministry of EducationChongqing University Chongqing China
| |
Collapse
|
9
|
Chen J, Xu X, Nie R, Feng L, Li X, Liu B. Chitosan Modified Cationic Polyacrylamide Initiated by UV-H 2O 2 for Sludge Flocculation and New Insight on the Floc Characteristics Study. Polymers (Basel) 2020; 12:E2738. [PMID: 33218149 PMCID: PMC7698928 DOI: 10.3390/polym12112738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
In the present study, a novel graft modified flocculant CTS-g-PAMD was synthesized and applied to conduct sludge conditioning and dewatering. CTS-g-PAMD was copolymerized with AM, DMC and chitosan (CTS) under UV-H2O2 initiation. In addition, the effects of single factor experiments on the molecular weight (MW) CTS grafting efficiency (GE) of CTS-g-PAMD were determined and the optimal copolymerization conditions were achieved. The GE of CTS-g-PAMD reached 91.1% and the MW was 4.82 × 106 Da. As revealed from the characterized results of Fourier-transform infrared spectra (FT-IR), 1H/ NMR, X-ray diffraction (XRD), scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS), the successful synthesis of CTS-g-PAMD was confirmed, which is considered to be conducive to explaining sludge dewatering performance. Under the optimal conditions (pH = 7.0, flocculant dosage = 35 mg/L), the best flocculating performance (FCMC: 73.7%; SRF: 4.7 × 1012 m·kg-1, turbidity: 9.4 NTU) and large and dense sludge flocs (floc size d50 = 379.142 µm, floc fractal dimension Df = 1.58) were formed. The DMC and CTS chain segments exhibiting cationic properties significantly improved the positive charge density and enhanced the electrical patching effect of CTS-g-PAMD. The long molecular chain of CTS-g-PAMD exhibited superior extensibility, which enhanced bridging effect on adsorption. Moreover, the sludge floc after undergoing CTS-g-PAMD conditioning exhibited robust shear resistance and regeneration ability. After the sludge floc was crushed and broken, a large and dense sludge floc was formed, helping significantly reduce the sludge specific resistance (SRF), turbidity and cake moisture content (FCMC) and enhance the sludge dewatering effect. The novel CTS-g-PAMD flocculant shows promising practical applications and high market value.
Collapse
Affiliation(s)
- Jie Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.C.); (X.X.); (R.N.)
| | - Xiaojun Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.C.); (X.X.); (R.N.)
| | - Rui Nie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.C.); (X.X.); (R.N.)
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China; (X.L.); (B.L.)
| | - Xuhao Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China; (X.L.); (B.L.)
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China; (X.L.); (B.L.)
| |
Collapse
|
10
|
Song Z, Zhang W, Gao H, Wang D. Comprehensive assessment of flocculation conditioning of dredged sediment using organic polymers: Dredged sediment dewaterability and release of pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139884. [PMID: 32758938 DOI: 10.1016/j.scitotenv.2020.139884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Dredged sediment contains various contaminants that are released during the process of dewatering and subsequent utilization. In this study, two organic polymers-chitosan (CS) and cationic polyacrylamide (CPAM) both in samples of varying molecular weights (MWs)-were used as flocculants to improve dewatering and rheological behaviors of dredged sediment, and floc properties were characterized to unravel the mechanisms of flocculation treatment. Moreover, pollutant transfer and release in the flocculation-dewatering process was investigated. Compared to CPAM, CS had better performance in dredged sediment dewatering, and more compact flocs were produced after treatment. The flocculated sediment belonged to the type of yield dilatant fluid and showed good shear resistance. Three-dimensional excitation-emission matrix spectroscopy and PARAFAC showed that protein-like substances were removed after treatment. The MW of CS had insignificant effects on flocculation performance, whereas CPAM removal efficiency for protein-like substances was increased at higher MWs, which may be related to the adsorption bridging effect of CPAM polymer chains. There were significant correlations between the dewatering performance of sediments, MW distribution of organics and rheological properties. CS and CPAM treatments caused the transformation of Fe/Al-P into CaP, which could reduce phosphorus release and its ecological risk. The flocculants contributed to the formation of carbonate-bound forms of As, Cr, Pb, and Ni. Ecological risk assessment results of the geo-accumulation index showed that medium- and low-MW CS reduced risk of sediment contamination, whereas CPAM and high-MW CS increased the ecological risk. CS had a greater effect on the release of VOCs than CPAM, with an increased release of total VOCs at higher flocculant MWs. The study was helpful to understand the dewatering mechanism of dredged sediment and provided a new strategy for pollution release management in sediment dewatering.
Collapse
Affiliation(s)
- Zhenzhen Song
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China.
| | - Hongyu Gao
- Institute for resources and environmental engineering, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Dongsheng Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Maćczak P, Kaczmarek H, Ziegler-Borowska M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3951. [PMID: 32906667 PMCID: PMC7559979 DOI: 10.3390/ma13183951] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
Polymer flocculants are used to promote solid-liquid separation processes in potable water and wastewater treatment. Recently, bio-based flocculants have received a lot of attention due to their superior advantages over conventional synthetic polymers or inorganic agents. Among natural polymers, polysaccharides show many benefits such as biodegradability, non-toxicity, ability to undergo different chemical modifications, and wide accessibility from renewable sources. The following article provides an overview of bio-based flocculants and their potential application in water treatment, which may be an indication to look for safer alternatives compared to synthetic polymers. Based on the recent literature, a new approach in searching for biopolymer flocculants sources, flocculation mechanisms, test methods, and factors affecting this process are presented. Particular attention is paid to flocculants based on starch, cellulose, chitosan, and their derivatives because they are low-cost and ecological materials, accepted in industrial practice. New trends in water treatment technology, including biosynthetic polymers, nanobioflocculants, and stimulant-responsive flocculants are also considered.
Collapse
Affiliation(s)
- Piotr Maćczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.M.); (M.Z.-B.)
- Water Supply and Sewage Enterprise LLC, Przemysłowa 4, 99-300 Kutno, Poland
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.M.); (M.Z.-B.)
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.M.); (M.Z.-B.)
| |
Collapse
|
12
|
Shibata Y, Kurokawa T, Aizawa T, Gong JP. Bactericidal effect of cationic hydrogels prepared from hydrophilic polymers. J Appl Polym Sci 2020. [DOI: 10.1002/app.49583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuki Shibata
- Graduate School of Life Science Hokkaido University Sapporo Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University Sapporo Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University Sapporo Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University Sapporo Japan
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD) Hokkaido University Sapporo Japan
| |
Collapse
|
13
|
Zhou Y, Zheng H, Wang Y, Zhao R, Liu H, Ding W, An Y. Enhanced municipal sludge dewaterability using an amphiphilic microblocked cationic polyacrylamide synthesized through ultrasonic-initiation: Copolymerization and flocculation mechanisms. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Feng L, Li X, Lu W, Liu Z, Xu C, Chen Y, Zheng H. Preparation of a graft modified flocculant based on chitosan by ultrasonic initiation and its synergistic effect with kaolin for the improvement of acid blue 83 (AB 83) removal. Int J Biol Macromol 2020; 150:617-630. [DOI: 10.1016/j.ijbiomac.2020.02.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
|
15
|
Wu P, Yi J, Feng L, Li X, Chen Y, Liu Z, Tian S, Li S, Khan S, Sun Y. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering. Int J Biol Macromol 2020; 155:708-720. [PMID: 32259538 DOI: 10.1016/j.ijbiomac.2020.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
In this study, a new type of graft modified flocculant (CS-g-PAD) was copolymerized of AM, DAC and chitosan (CS) by microwave assisted initiation and used for sludge conditioning and dewatering. The effect of reaction conditions on microwave assisted copolymerization was investigated and their optimal values were obtained by orthogonal experiments. The structure and chemical properties of CS-g-PAD were characterized and the results indicated that microwave assisted polymerization can cause the generated side polymer chain of PAD to react with the -NH2 active group in CS. Thus, the graft copolymerization occurred at amino group connected with C2 site. Compared with CCPAM, PAD and CS, the synthesized CS-g-PAD exhibits superior sludge dewatering performance (FCMC: 72.1%, SRF: 4.5 × 1012 m/kg, d50: 679.556 μm, Df: 1.72, floc sedimentation rate: 5.72 cm/min) in a wide pH range (pH = 3.5-9.5). Because CS-g-PAD contains a large amount of cationic DAC and positively charged CS as well as many functional groups on CS, it increases the charge neutralization, electrical patching and adsorption capability. Additionally, the grafting PAD on CS has a good extension in solution to increase its adsorption bridging effect. The new grafted CS-g-PAD is promising and has great practical application value in sludge dewatering and condition.
Collapse
Affiliation(s)
- Pei Wu
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Xin Yun Chuang Institute of Environmental Protection Research Co. Ltd, Chongqing 402566, China
| | - Jiaxiang Yi
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Xin Yun Chuang Institute of Environmental Protection Research Co. Ltd, Chongqing 402566, China
| | - Li Feng
- Chongqing Xin Yun Chuang Institute of Environmental Protection Research Co. Ltd, Chongqing 402566, China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Xuhao Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shenghai Tian
- Chongqing Water Supply Co., Ltd, Chongqing 400013, China
| | - Shiyao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045,China
| | - Sarfaraz Khan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045,China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
16
|
Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater. Processes (Basel) 2020. [DOI: 10.3390/pr8010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and 1H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d50 = 513.467 μm, fractal dimension (Df) = 1.61, flocculation kinetics (KN0) = 27.24 × 10−3·s−1) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value.
Collapse
|
17
|
Liu Y, Zheng H, An Y, Ren J, Zheng X, Zhao C, Zhang S. Ultrasound-assisted synthesis of the β-cyclodextrin based cationic polymeric flocculants and evaluation of flocculation performance: Role of β-cyclodextrin. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Sabaghi S, Fatehi P. Phenomenological Changes in Lignin Following Polymerization and Its Effects on Flocculating Clay Particles. Biomacromolecules 2019; 20:3940-3951. [PMID: 31498610 DOI: 10.1021/acs.biomac.9b01016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic kraft lignin (CKL) macromolecules were produced via polymerizing kraft lignin (KL) with [2-(acryloyloxy)ethyl]trimethylammonium chloride (ATAC) or [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METAM). Despite slightly different charge densities (2.3-2.5 mmol/g) of CKL, lignin-METAM (KL-METAM) had a significantly larger molecular weight and radius of gyration. A correlation was observed between the structure of CKLs and their impacts on the surface hydrophilicity of kaolin particles. In interacting with kaolin particles, KL-METAM generated larger and stronger flocs with looser structures than did KL-ATAC. Compared to ATAC, METAM had one additional methyl substituent on its structure, which provided fundamental evidence on how a small group (i.e., a methyl group) on the structure of a cationic monomer can have a substantial influence on its polymerization with lignin and subsequently on the efficiency of the induced macromolecule as a flocculant in a kaolin suspension system.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department , Lakehead University , 955 Oliver Road , Thunder Bay , ON , Canada P7B 5E1
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department , Lakehead University , 955 Oliver Road , Thunder Bay , ON , Canada P7B 5E1
| |
Collapse
|
19
|
Fabrication of Bifunctional Chitosan-Based Flocculants: Characterization, Assessment of Flocculation, and Sterilization Performance. MATERIALS 2018; 11:ma11102009. [PMID: 30336604 PMCID: PMC6213324 DOI: 10.3390/ma11102009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022]
Abstract
In this study, a series of chitosan-based quaternary ammonium graft flocculants, namely chitosan-graft-poly(acrylamide and methacryloyl ethyl trimethyl ammonium chloride) [CTS-g-P(AM-DMC)], was successfully synthesized by plasma initiation, and the as-prepared [CTS-g-P(AM-DMC)] had both flocculation and sterilization functions. Various characterization techniques were used to study the structure and physicochemical properties of the chitosan-based flocculants. ¹H nuclear magnetic resonance spectroscopy (¹H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and thermogravimetric analysis/differential scanning calorimetry (TG/DSC) confirmed the successful synthesis of CTS-g-P(AM-DMC). Scanning electron microscopy (SEM) analysis exhibited that CTS-g-P(AM-DMC) contained a smooth convex and porous structure with an enormous surface area. CTS-g-P(AM-DMC) was then used to flocculate the simulated wastewater of the kaolin suspension and the Salmonella suspension. Besides external factors, such as the dosage of flocculant and pH, the effect of the internal factor graft ratio was also evaluated. The experimental results showed that CTS-g-P(AM-DMC) also revealed a strong sterilization effect, aside from the excellent flocculation effect. Moreover, the sterilization mechanism was investigated through a series of conductivity measurements and the analysis of fluorescence-based cell live/dead tests. The results indicated that CTS-g-P(AM-DMC) destroyed the cell membrane of Salmonella through its grafted quaternary ammonium salt, thereby exhibiting sterilization property.
Collapse
|
20
|
Feng L, Liu S, Zheng H, Liang J, Sun Y, Zhang S, Chen X. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering. ULTRASONICS SONOCHEMISTRY 2018; 44:53-63. [PMID: 29680628 DOI: 10.1016/j.ultsonch.2018.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance spectroscopy (1H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (MK) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, mAM:mDMDAAC and nNaPAA:nDMDAAC. The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d50) and fractal dimension (Df). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 1012 m kg-1, FCMC of 73.1%, d50 of 439.156 µm and Df of 1.490 were obtained at pH of 7.0, dosage of 40 mg L-1 and the molecular weight of 5.0 × 106 Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shuang Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jianjun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Shixin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
21
|
Zhang H, Jiang J, Shang S, Song Z, Song J. Novel, rosin-based, hydrophobically modified cationic polyacrylamide for kaolin suspension flocculation. J Appl Polym Sci 2018. [DOI: 10.1002/app.46637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haibo Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory on Forest Chemical Engineering, State Forestry Administration; Nanjing 210042 People's Republic of China
- College of Materials Science and Technology, Beijing Forestry University, Engineering Research Center of Forestry Biomass Material and Bioenergy; Ministry of Education; Beijing 100083 People's Republic of China
| | - Jianxin Jiang
- College of Materials Science and Technology, Beijing Forestry University, Engineering Research Center of Forestry Biomass Material and Bioenergy; Ministry of Education; Beijing 100083 People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory on Forest Chemical Engineering, State Forestry Administration; Nanjing 210042 People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory on Forest Chemical Engineering, State Forestry Administration; Nanjing 210042 People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry; University of Michigan-Flint; Flint Michigan 48502 United States
| |
Collapse
|
22
|
Ma J, Shi J, Ding L, Zhang H, Zhou S, Wang Q, Fu X, Jiang L, Fu K. Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Synthesis of a Cationic Polyacrylamide under UV Initiation and Its Flocculation in Estrone Removal. INT J POLYM SCI 2018. [DOI: 10.1155/2018/8230965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A ternary cationic polyacrylamide (CPAM) with the hydrophobic characteristic was prepared through ultraviolet- (UV-) initiated polymerization technique for the estrone (E1) environmental estrogen separation and removal. The monomers of acrylamide (AM), acryloyloxyethyl-trimethyl ammonium chloride (DAC), and acryloyloxyethyl dimethylbenzyl ammonium chloride (AODBAC) were used to synthesize the ternary copolymer (PADA). Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance spectroscopy (1H NMR), thermogravimetry/differential scanning calorimetry (TG/DSC), and scanning electron microscopy (SEM) were employed to characterize the structure, thermal decomposition property, and morphology of the polymers, respectively. FT-IR and 1H NMR results indicated the successful formation of the polymers. Besides, with the introduction of hydrophobic groups (phenyl group), an irregular and porous surface morphology and a favorable thermal stability of the PADA were observed by SEM and TG/DSC analyses, respectively. At the optimal condition (pH = 7, flocculant dosage = 4.0 mg/L and E1 concentration = 0.75 mg/L), an excellent E1 flocculation performance (E1 removal rate: 90.1%, floc size: 18.3 μm, and flocculation kinetics: 22.69×10-4 s−1) was acquired by using the efficient flocculant PADA-3 (cationic degree = 40%, and intrinsic viscosity = 6.30 dL·g−1). The zeta potential and floc size analyses were used to analyze the possible flocculation mechanism for the E1 removal. Results indicated that the charge neutralization, adsorption, and birding effects were dominant in the E1 removal progress.
Collapse
|
24
|
Liu Y, Zheng H, Wang Y, Zheng X, Wang M, Ren J, Zhao C. Synthesis of a cationic polyacrylamide by a photocatalytic surface-initiated method and evaluation of its flocculation and dewatering performance: nano-TiO2 as a photo initiator. RSC Adv 2018; 8:28329-28340. [PMID: 35542495 PMCID: PMC9084301 DOI: 10.1039/c8ra05622f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
In the face of complex water quality changes, the application of existing cationic polyacrylamide has been largely limited. In this study, a series of cationic polyacrylamides (TPADs) with excellent flocculation/dewatering performance and low dosage were synthesized through photocatalytic surface initiation using acrylamide (AM) and acryloyloxyethyl trimethylammonium chloride (DAC) as monomers and nano-TiO2 as an initiator. Characterization using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectroscopy, thermogravimetric/differential scanning calorimetry (TG/DSC) and scanning electron microscopy (SEM) was used to analyze the structural and morphological properties of TPADs. The initiation mechanism was described and the study on the properties of TPADs shows that the initiation method could obtain the copolymer with extra-high intrinsic viscosity. Furthermore, the flocculation and dewatering performance of TPADs and PADs were investigated in the micro-polluted low turbidity water flocculation test and sludge dewatering test. The application experimental results indicated that TPADs showed satisfactory turbidity removal and sludge dewatering performance by virtue of strong charge neutralization and a bridging effect. The excellent flocculation/dewatering performance was attributed to the photocatalytic surface-initiated method and the nano-TiO2 initiator. Therefore, it is expected to open up new initiation methods in the synthesis of polymeric flocculants for a broad variety of applications. In the face of complex water quality changes, the application of existing cationic polyacrylamide has been largely limited.![]()
Collapse
Affiliation(s)
- Yongzhi Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- PR China
| | - Yili Wang
- College of Environmental Science and Engineering
- Research Center for Water Pollution Source Control and Eco-remediation
- Beijing Forestry University
- Beijing 100083
- China
| | - Xinyu Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- PR China
| | - Moxi Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- PR China
| | - Jie Ren
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- PR China
| | - Chuanliang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- PR China
| |
Collapse
|
25
|
Bhuyan MM, Okabe H, Hidaka Y, Hara K. Pectin-[(3-acrylamidopropyl) trimethylammonium chloride-co
-acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption. J Appl Polym Sci 2017. [DOI: 10.1002/app.45906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Md Murshed Bhuyan
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| | - Hirotaka Okabe
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiki Hidaka
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| | - Kazuhiro Hara
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|