1
|
Yang M, Chen C, Wang D, Shao Y, Zhou W, Shuai C, Yang Y, Ning X. Biomedical rare-earth magnesium alloy: Current status and future prospects. JOURNAL OF MAGNESIUM AND ALLOYS 2024; 12:1260-1282. [DOI: 10.1016/j.jma.2024.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Barberi J, Saqib M, Dmitruk A, Opitz J, Naplocha K, Beshchasna N, Spriano S, Ferraris S. Characterization of Tannic Acid-Coated AZ31 Mg Alloy for Biomedical Application and Comparison with AZ91. MATERIALS (BASEL, SWITZERLAND) 2024; 17:343. [PMID: 38255511 PMCID: PMC10817444 DOI: 10.3390/ma17020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Magnesium alloys are promising materials for bioresorbable implants that will improve patient life and reduce healthcare costs. However, their clinical use is prevented by the rapid degradation and corrosion of magnesium, which leads to a fast loss of mechanical strength and the formation of by-products that can trigger tissue inflammation. Here, a tannic acid coating is proposed to control the degradation of AZ31 and AZ91 alloys, starting from a previous study by the authors on AZ91. The coatings on the two materials were characterized both by the chemical (EDS, FTIR, XPS) and the morphological (SEM, confocal profilometry) point of view. Static degradation tests in PBS and electrochemical measurements in different solutions showed that the protective performances of the tannic acid coatings are strongly affected by the presence of cracks. The presence of fractures in the protective layer generates galvanic couples between the coating scales and the metal, worsening the corrosion resistance. Although degradation control was not achieved, useful insights on the degradation mechanisms of coated Mg surfaces were obtained, as well as key points for future studies: it resulted that the absence of cracks in protective coatings is of uttermost importance for novel biodegradable implants with proper degradation kinetics.
Collapse
Affiliation(s)
- Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
- Centro Interdipartimentale Polito BioMEDLab, Politecnico di Torino, Via Piercarlo Boggio 59, 10138 Torino, Italy
| | - Muhammad Saqib
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany; (M.S.); (J.O.); (N.B.)
| | - Anna Dmitruk
- Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (K.N.)
| | - Jörg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany; (M.S.); (J.O.); (N.B.)
| | - Krzysztof Naplocha
- Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (K.N.)
| | - Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany; (M.S.); (J.O.); (N.B.)
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
- Centro Interdipartimentale Polito BioMEDLab, Politecnico di Torino, Via Piercarlo Boggio 59, 10138 Torino, Italy
| | - Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
- Centro Interdipartimentale Polito BioMEDLab, Politecnico di Torino, Via Piercarlo Boggio 59, 10138 Torino, Italy
| |
Collapse
|
3
|
Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2287. [PMID: 37630871 PMCID: PMC10459405 DOI: 10.3390/nano13162287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.
Collapse
Affiliation(s)
- Maroua H. Kaou
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
| | - Mónika Furkó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Katalin Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Csaba Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| |
Collapse
|
4
|
Tran DT, Chen FH, Wu GL, Ching PCO, Yeh ML. Influence of Spin Coating and Dip Coating with Gelatin/Hydroxyapatite for Bioresorbable Mg Alloy Orthopedic Implants: In Vitro and In Vivo Studies. ACS Biomater Sci Eng 2023; 9:705-718. [PMID: 36695051 DOI: 10.1021/acsbiomaterials.2c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Suitable biomechanical properties, good biocompatibility, and osteoconductivity of a degradable magnesium (Mg) alloy make it a potential material for orthopedic implants. The main limitation of Mg is its high corrosion rate in the human body. Surface modification is necessary to improve the Mg corrosion resistance. In this work, a polymeric layer of gelatin/nanohydroxyapatite (Gel/nHA) was coated on a ZK60 Mg alloy by dip coating and spin coating to test the corrosion resistance and biocompatibility in vitro and in vivo. The results from the in vitro test revealed that the coated groups reduced the corrosion rate with the corrosion current density by 59 and 81%, from 31.22 to 12.83 μA/cm2 and 5.83 μA/cm2 in the spin coating and dip coating groups, respectively. The dip coating group showed better corrosion resistance than the spin coating group with the lowest released hydrogen content (17.5 mL) and lowest pH value (8.23) and reducing the current density by 45%. In vitro, the relative growth rate was over 75% in all groups tested with MG63, demonstrating that the Mg substrate and coating materials were within the safety range. The dip coating and spin coating groups enhanced the cell proliferation with significantly higher OD values (3.3, 3.0, and 2.5, respectively) and had better antihemolysis and antiplatelet adhesion abilities than the uncoated group. The two coating methods showed no difference in the cellular response, cell migration, hemolysis, and platelet adhesion test. In in vivo tests in rats, the dip coating group also showed a higher corrosion resistance with a lower corrosion rate and mass loss than the spin coating group. In addition, the blood biochemistry and histopathology results indicated that all materials used in this study were biocompatible with living subjects. The present research confirmed that the two methods have no noticeable difference in cell and organ response but the corrosion resistance of dip coating was higher than that of spin coating either in vitro or in vivo.
Collapse
Affiliation(s)
- Duong-Thuy Tran
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Fang-Hsu Chen
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Guan-Lin Wu
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Paula Carmela O Ching
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| |
Collapse
|
5
|
Peng W, Chen Y, Fan H, Chen S, Wang H, Song X. A Novel PLLA/MgF 2 Coating on Mg Alloy by Ultrasonic Atomization Spraying for Controlling Degradation and Improving Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2023; 16:682. [PMID: 36676415 PMCID: PMC9864383 DOI: 10.3390/ma16020682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Problems of rapid degradation and poor biocompatibility (endothelialization and hemocompatibility) limit magnesium (Mg) alloy's further applications in vascular stents. To solve these problems, a novel composite coating was designed on Mg alloy via a two-step method. First, a Mg alloy sample was immersed in hydrofluoric acid. Then, a poly-l-lactic acid (PLLA) coating was made by ultrasonic atomization spraying with 5 and 10 layers (referred to as PLLA(5)-HF-Mg and PLLA(10)-HF-Mg). Characterizations were analyzed from the microstructure, element distribution, and wettability. The degradation behavior was tested with an electrochemical test and immersion test. Endothelialization was investigated using human umbilical vein endothelial cells (HUVECs). Hemocompatibility was examined with a platelet adhesion test. The results showed that the PLLA coating could not only cover the surface, but also could permeate through and cover the holes on the MgF2 layer, mechanically locked with the substrate. Thus, the composite coating had higher corrosion resistance. The PLLA/MgF2 coating, especially on PLLA(10)-HF-Mg, enhanced HUVECs' viability and growth. While incubated with platelets, the PLLA/MgF2 coating, especially on PLLA(10)-HF-Mg, had the lowest platelet adhesion number and activity. Taken together, the novel PLLA/MgF2 coating controls Mg alloy's degradation by spraying different layers of PLLA, resulting in better endothelialization and hemocompatibility, providing a promising candidate for cardiovascular stents.
Collapse
Affiliation(s)
- Wenpeng Peng
- Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Department of Clinical Medicine, Harbin Medical University, Harbin 150000, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yizhe Chen
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Hongde Fan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui Wang
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Xiang Song
- Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Department of Clinical Medicine, Harbin Medical University, Harbin 150000, China
| |
Collapse
|
6
|
Fan H, Ma J, Li C, Xing G, Han Y. Biodegradable coated stent in the treatment of coronary heart disease in the elderly. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Guo X, Hu Y, Yuan K, Qiao Y. Review of the Effect of Surface Coating Modification on Magnesium Alloy Biocompatibility. MATERIALS 2022; 15:ma15093291. [PMID: 35591624 PMCID: PMC9100161 DOI: 10.3390/ma15093291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Magnesium alloy, as an absorbable and implantable biomaterial, has been greatly developed in the application field of biomaterials in recent years due to its excellent biocompatibility and biomechanics. However, due to the poor corrosion resistance of magnesium alloy in the physiological environment, the degradation rate will be unbalanced, which seriously affects the clinical use. There are two main ways to improve the corrosion resistance of magnesium alloy: one is by adding alloying elements, the other is by surface modification technology. Compared with adding alloy elements, the surface coating modification has the following advantages: (1) The surface coating modification is carried out without changing the matrix elements of magnesium alloy, avoiding the introduction of other elements; (2) The corrosion resistance of magnesium alloy can be improved by relatively simple physical, chemical, or electrochemical improvement. From the perspective of corrosion resistance and biocompatibility of biomedical magnesium alloy materials, this paper summarizes the application and characteristics of six different surface coating modifications in the biomedical magnesium alloy field, including chemical conversion method, micro-arc oxidation method, sol-gel method, electrophoretic deposition, hydrothermal method, and thermal spraying method. In the last section, it looks forward to the development prospect of surface coating modification and points out that preparing modified coatings on the implant surface combined with various modification post-treatment technologies is the main direction to improve biocompatibility and realize clinical functionalization.
Collapse
Affiliation(s)
| | | | | | - Yang Qiao
- Correspondence: ; Tel.: +86-152-7510-6865
| |
Collapse
|
8
|
Karatas O, Gevrek F. 3,4,5-Trihydroxybenzoic Acid Attenuates Ligature-Induced Periodontal Disease in Wistar Rats. Antiinflamm Antiallergy Agents Med Chem 2021; 20:51-60. [PMID: 32026787 DOI: 10.2174/1871523019666200206094335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND 3,4,5-Trihydroxybenzoic acid, which is also known as gallic acid, is an antiinflammatory agent that could provide beneficial effects in preventing periodontal inflammation. The present study aimed to evaluate the anti-inflammatory effects of gallic acid on experimental periodontitis in Wistar rats. Alveolar bone loss, osteoclastic activity, osteoblastic activity, and collagenase activity were also determined. METHODS Thirty-two Wistar rats were used in the present study. Study groups were created as following: Healthy control (C,n=8) group; periodontitis (P,n=8) group; periodontitis and 30 mg/kg gallic acid administered group (G30,n=8); periodontitis and 60 mg/kg gallic acid administered group (G60,n=8). Experimental periodontitis was created by placing 4-0 silk sutures around the mandibular right first molar tooth. Morphological changes in alveolar bone were determined by stereomicroscopic evaluation. Mandibles were undergone histological evaluation. Matrix metalloproteinase (MMP)-8, tissue inhibitor of MMPs (TIMP)-1, bone morphogenetic protein (BMP)-2 expressions, tartrateresistant acid phosphatase (TRAP) positive osteoclast cells, osteoblast, and inflammatory cell counts were determined. RESULTS The highest alveolar bone loss was observed in the periodontitis group. Both doses of gallic acid decreased alveolar bone loss as compared to the P group. TRAP-positive osteoclast cell counts were higher in the P group, and gallic acid successfully lowered these counts. Osteoblast cells also increased in gallic acid administered groups. Inflammation in the P group was also higher than those of C, G30, and G60 groups supporting the role of gallic acid in preventing inflammation. 30 and 60 mg/kg doses of gallic acid decreased MMP-8 levels and increased TIMP-1 levels. BMP levels increased in gallic acid administered groups, similar to several osteoblasts. CONCLUSION Present results revealed an anti-inflammatory effect of gallic acid, which was indicated by decreased alveolar bone loss and collagenase activity and increased osteoblastic activity.
Collapse
Affiliation(s)
- Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
9
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
10
|
Mohammadi H, Muhamad N, Sulong AB, Ahmadipour M. Recent advances on biofunctionalization of metallic substrate using ceramic coating: How far are we from clinically stable implant? J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Lin LH, Lee HP, Yeh ML. Characterization of a Sandwich PLGA-Gallic Acid-PLGA Coating on Mg Alloy ZK60 for Bioresorbable Coronary Artery Stents. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5538. [PMID: 33291735 PMCID: PMC7730464 DOI: 10.3390/ma13235538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Absorbable magnesium stents have become alternatives for treating restenosis owing to their better mechanical properties than those of bioabsorbable polymer stents. However, without modification, magnesium alloys cannot provide the proper degradation rate required to match the vascular reform speed. Gallic acid is a phenolic acid with attractive biological functions, including anti-inflammation, promotion of endothelial cell proliferation, and inhibition of smooth muscle cell growth. Thus, in the present work, a small-molecule eluting coating is designed using a sandwich-like configuration with a gallic acid layer enclosed between poly (d,l-lactide-co-glycolide) layers. This coating was deposited on ZK60 substrate, a magnesium alloy that is used to fabricate bioresorbable coronary artery stents. Electrochemical analysis showed that the corrosion rate of the specimen was ~2000 times lower than that of the bare counterpart. The released gallic acid molecules from sandwich coating inhibit oxidation by capturing free radicals, selectively promote the proliferation of endothelial cells, and inhibit smooth muscle cell growth. In a cell migration assay, sandwich coating delayed wound closure in smooth muscle cells. The sandwich coating not only improved the corrosion resistance but also promoted endothelialization, and it thus has great potential for the development of functional vascular stents that prevent late-stent restenosis.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hung-Pang Lee
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
12
|
Ferrández-Montero A, Lieblich M, González-Carrasco J, Benavente R, Lorenzo V, Detsch R, Boccaccini A, Ferrari B. Development of biocompatible and fully bioabsorbable PLA/Mg films for tissue regeneration applications. Acta Biomater 2019; 98:114-124. [PMID: 31085363 DOI: 10.1016/j.actbio.2019.05.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
During recent years, Mg reinforced polylactic acid (PLA) composites have emerged as potential biocompatible and bioabsorbable materials for biomedical applications. It has been shown that Mg particles added to a matrix based on a biodegradable polymer can address the lack of bioactivity and the low mechanical properties of the polymers and, furthermore, it can counteract the detrimental effects associated to the high degradation rate of Mg, as alkalinization and elevated H2 release. Additionally, the polymer can protect the Mg particles, by tailoring their degradation rate. Former processing of these composites performed by extrusion, compression and injection molding employed Mg contents up to 10 wt%. Higher amounts of Mg resulted in heterogeneous materials and thermally degraded matrices, with the corresponding higher degradation rate. In the present work, Mg reinforced PLA films with Mg content as high as 50 wt% were obtained without compromising the thermal stability of the polymer. Firstly, a successful dispersion of Mg microparticles was achieved by a breakthrough in processing introducing a colloidal step where organic additives were added to modify the Mg particle surface and promote a chemically stable suspension. The resulting colloidal suspension was then used as feedstock to obtain composite films by tape casting. The films show advantageous in vitro behaviour in terms of degradation, hydrogen release and oxygen permeability. In addition, the viability with fibroblast cells (MEF) opens a window of opportunity for these composite films as bioabsorbable material for tissue engineering and wound dressing applications. STATEMENT OF SIGNIFICANCE: Magnesium materials have extraordinary biodegradable properties and bioactive behavior due to release of Mg2+ ions, which offer a promising opportunity for their applicability as biomaterials for tissue regeneration. However, Mg is one of the most reactive metals with a high degradation rate. In contact with water produces H2, associated with a risk of failure of the implant. One alternative to minimize this drawback is the use of Mg particles surrounded by a biodegradable biocompatible polymer such as polylactic acid (PLA) to obtain PLA/Mg composites. In this work we processed Mg reinforced PLA in the shape of films that would be suitable for tissue regeneration. In vitro behavior of PLA/Mg films demonstrated that Mg2+ ions increase the fibroblast cells growth.
Collapse
|
13
|
Brunello G, Elsayed H, Biasetto L. Bioactive Glass and Silicate-Based Ceramic Coatings on Metallic Implants: Open Challenge or Outdated Topic? MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2929. [PMID: 31510062 PMCID: PMC6766230 DOI: 10.3390/ma12182929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022]
Abstract
The overall success and long-term life of the medical implants are decisively based on the convenient osseointegration at the hosting tissue-implant interface. Therefore, various surface modifications and different coating approaches have been utilized to the implants to enhance the bone formation and speed up the interaction with the surrounding hosting tissues, thereby enabling the successful fixation of implants. In this review, we will briefly present the main metallic implants and discuss their biocompatibility and osseointegration ability depending on their chemical and mechanical properties. In addition, as the main goal of this review, we explore the main properties of bioactive glasses and silica-based ceramics that are used as coating materials for both orthopedic and dental implants. The current review provides an overview of these bioactive coatings, with a particular emphasis on deposition methods, coating adhesion to the substrates and apatite formation ability tested by immersion in Simulated Body Fluid (SBF). In vitro and in vivo performances in terms of biocompatibility, biodegradability and improved osseointegration are examined as well.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
- Department of Neurosciences, Section of Dentistry, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy.
- Ceramics Department, National Research Centre, El-Bohous Street, Cairo 12622, Egypt.
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
| |
Collapse
|
14
|
Porous Alumina Ceramics Obtained by Particles Self-Assembly Combing Freeze Drying Method. MATERIALS 2019; 12:ma12060897. [PMID: 30889800 PMCID: PMC6470508 DOI: 10.3390/ma12060897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/03/2022]
Abstract
An innovative approach for fabricating porous alumina ceramics is demonstrated in this paper. The distinguished feature is that the construction of the porous structure stems from the interaction between ceramic particles, which is a poorly explored area. By tailoring the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy to the second minimum, the dilute ceramic slurry would be gelled by the weakly assembled particle network, and the assembled structure is conserved via a freeze drying strategy. The DLVO theoretical analyses revealed that the second minimum of interaction energy could be obtained when the counter-ion concentration in colloidal suspension is 1.5 × 10−2 mol/L. The properties of the as-assembled samples were compared with one produced by the conventional freeze drying method. Results showed that the self-assembly of alumina particles has a positive influence on micro structures. Unlike the laminar pores generated by the traditional freeze drying procedure, the assembled samples show homogeneously interconnected and hierarchical open pores which were stable even after a 24 h dwell time at 950 °C (open porosity is 79.19% for the slurry of vol 20% solid loading). Particularly, after sintering at 1550 °C for 2 h, open porosity (67.01%) of the assembled samples was significantly greater than that of their un-assembled counterparts (39.97%). Besides, the assembled sample shows a narrower pore size distribution and a relatively higher cumulative pore volume.
Collapse
|
15
|
Yang Z, Chen N, Qin X. Fabrication of Porous Al₂O₃ Ceramics with Submicron-Sized Pores Using a Water-Based Gelcasting Method. MATERIALS (BASEL, SWITZERLAND) 2018; 11:ma11091784. [PMID: 30235873 PMCID: PMC6165045 DOI: 10.3390/ma11091784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 05/02/2023]
Abstract
The gelcasting method is usually employed to fabricate relatively dense ceramics. In this work, however, porous Al₂O₃ ceramics with submicron-sized pores were fabricated using the water-based gelcasting method by keeping the Al₂O₃ content at low levels. By controlling the water content in the ceramic slurries and the sintering temperature of the green samples, the volume fractions and the size characteristics of the pores in the porous Al₂O₃ can be readily obtained. For the porous Al₂O₃ ceramics prepared with 30 vol.% Al₂O₃ content in the slurries, their open porosities were from 38.3% to 47.2%, while their median pore sizes varied from 299.8 nm to 371.9 nm. When there was more Al₂O₃ content in the slurries (40 vol.% Al₂O₃), the porous Al₂O₃ ceramics had open porosities from 37.0% to 46.5%, and median pore sizes from 355.4 nm to 363.1 nm. It was found that a higher sintering temperature and Al₂O₃ content in the slurries increased the mechanical strength of the porous Al₂O₃ ceramics.
Collapse
Affiliation(s)
- Zhihong Yang
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.
| | - Nan Chen
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.
| | - Xiaomei Qin
- Department of Physics, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
16
|
Cazzola M, Ferraris S, Boschetto F, Rondinella A, Marin E, Zhu W, Pezzotti G, Vernè E, Spriano S. Green Tea Polyphenols Coupled with a Bioactive Titanium Alloy Surface: In Vitro Characterization of Osteoinductive Behavior through a KUSA A1 Cell Study. Int J Mol Sci 2018; 19:E2255. [PMID: 30071658 PMCID: PMC6121542 DOI: 10.3390/ijms19082255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 01/08/2023] Open
Abstract
A chemically-treated titanium alloy (Ti6Al4V) surface, able to induce hydroxyapatite precipitation from body fluids (inorganic mineralization activity), was functionalized with a polyphenolic extract from green tea (tea polyphenols, TPH). Considering that green tea polyphenols have stimulating effects on bone forming cells (biological mineralization), the aim was to test their osteoinductive behavior due to co-operation of inorganic and biological mineralization on mesenchymal stem cells KUSA A1. The functionalized surfaces were characterized by using the Folin⁻Ciocalteu method and X-ray photoelectron spectroscopy to confirm the successful outcome of the functionalization process. Two cell cultures of mesenchymal stem cells, KUSA A1 were performed, with or without osteoinductive factors. The cells and surfaces were characterized for monitoring cell viability and hydroxyapatite production: Fourier Transform Infrared Spectroscopy and Raman spectroscopy analyses showed deposition of hydroxyapatite and collagen due to the cell activity, highlighting differentiation of KUSA A1 into osteoblasts. A higher production of extracellular matrix was highlighted on the functionalized samples by laser microscope and the fluorescence images showed higher viability of cells and greater presence of osteocalcin in these samples. These results highlight the ability of polyphenols to improve cell differentiation and to stimulate biological mineralization, showing that surface functionalization of metal implants could be a promising way to improve osteointegrability.
Collapse
Affiliation(s)
- Martina Cazzola
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8126, Japan.
- Department of immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Alfredo Rondinella
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8126, Japan.
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8126, Japan.
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8126, Japan.
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8126, Japan.
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Enrica Vernè
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
17
|
Development of a Novel Degradation-Controlled Magnesium-Based Regeneration Membrane for Future Guided Bone Regeneration (GBR) Therapy. METALS 2017. [DOI: 10.3390/met7110481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Song D, Li C, Zhang L, Ma X, Guo G, Zhang F, Jiang J, Ma A. Decreasing Bio-Degradation Rate of the Hydrothermal-Synthesizing Coated Mg Alloy via Pre-Solid-Solution Treatment. MATERIALS 2017; 10:ma10080858. [PMID: 28773223 PMCID: PMC5578224 DOI: 10.3390/ma10080858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
Abstract
In this study, we report an effective approach, pre-solid solution (SS) treatment, to reduce the in-vitro bio-degradation rate of the hydrothermal-synthesizing coated Mg–2Zn–Mn–Ca–Ce alloy in Hanks’ solution. Pre-SS treatment alters the microstructure of alloys, which benefits the corrosion resistances of the substrate itself and the formed coating as well. The micro-galvanic corrosion between the secondary phase (cathode) and the α-Mg phase (anode) is relieved due to the reduction of the secondary phase. Meanwhile, coating formed on the SS-treated alloy was compacter than that on as-cast alloy, which provides better protection against initial corrosion.
Collapse
Affiliation(s)
- Dan Song
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
- Suqian Research Institute of Hohai University, Suqian 223800, China.
| | - Cheng Li
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Liwen Zhang
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Xiaolong Ma
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Guanghui Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Fan Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
- Department of Materials Science and Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Jinghua Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
- Suqian Research Institute of Hohai University, Suqian 223800, China.
| | - Aibin Ma
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
- Suqian Research Institute of Hohai University, Suqian 223800, China.
| |
Collapse
|